Skip to main content

Advertisement

Log in

Experimental manipulations of afferent immune responses influence efferent immune responses to brain tumors

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Tumors grow more readily in the brain than in the periphery, in part due to immune privilege. Differences in both afferent and efferent components of the immune response contribute to this lower level of responsiveness. On the afferent side, despite the lack of lymphatic vessels in the brain, antigens from brain arrive in lymph nodes and spleen by several routes, and the route taken may influence the type of response generated. Work with viruses and soluble antigens in mice has shown that the intracerebral location and the volume of the inoculation influence the strength of the cytotoxic T cell response. We examined whether these factors influence the T cell response against experimental brain tumors in mice. Placement of tumor cells in the cerebral ventricles instead of the parenchyma generated an immune response sufficient to increase survival time. A large volume of an intraparenchymal infusion of tumor cells caused spread of cells to the ventricles, and resulted in longer survival time relative to a small volume infusion. Infusion of the same dose of radiolabeled tumor cells in either a small volume or a large volume allowed tracking of potential tumor antigens to the periphery. Both modes of infusion resulted in similar levels of radioactivity in blood, spleen and kidney. Unexpectedly, cells infused intraparenchymally in a small volume, compared to a large volume, resulted in (1) more radioactivity in cervical lymph nodes (parotid and deep cervical lymph nodes), (2) a greater number of CD11b+/Gr1+ myeloid suppressor cells in the tumors, and (3) fewer CD8+ cells within the tumor mass. Consistent with these observations, providing a stronger afferent stimulus by giving a concurrent subcutaneous injection of the same tumor cells infused into the brain increased CD8+ T cell infiltration of the tumor in the brain. These results suggest that the immune response elicited by antigens that drain predominantly to the cervical lymph nodes may be less effective than responses elicited at other lymph nodes, perhaps due to immunosuppressive cells. Directing therapies to the optimal peripheral sites may improve immune responses against brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alvarez D, Swirski FK, Yang TC, Fattouh R, Croitoru K, Bramson JL, Stampfli MR, Jordana M (2006) Inhalation tolerance is induced selectively in thoracic lymph nodes but executed pervasively at distant mucosal and nonmucosal tissues. J Immunol 176:2568–2580

    PubMed  CAS  Google Scholar 

  2. Barbey C, Donatelli-Dufour N, Batard P, Corradin G, Spertini F (2004) Intranasal treatment with ovalbumin but not the major T cell epitope ovalbumin 323–339 generates interleukin-10 secreting T cells and results in the induction of allergen systemic tolerance. Clin Exp Allergy 34:654–662

    Article  PubMed  CAS  Google Scholar 

  3. Bauer J, Bradl M, Hickley WF, Forss-Petter S, Breitschopf H, Linington C, Wekerle H, Lassmann H (1998) T-cell apoptosis in inflammatory brain lesions: destruction of T cells does not depend on antigen recognition. Am J Pathol 153:715–724

    PubMed  CAS  Google Scholar 

  4. Cho BK, Palliser D, Guillen E, Wisniewski J, Young RA, Chen J, Eisen HN (2000) A proposed mechanism for the induction of cytotoxic T lymphocyte production by heat shock fusion proteins. Immunity 12:263–272

    Article  PubMed  CAS  Google Scholar 

  5. Cserr HF, Knopf PM (1992) Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol Today 13:507–512

    Article  PubMed  CAS  Google Scholar 

  6. Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH (2000) Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol 1:119–126

    Article  PubMed  CAS  Google Scholar 

  7. Ezernitchi AV, Vaknin I, Cohen-Daniel L, Levy O, Manaster E, Halabi A, Pikarsky E, Shapira L, Baniyash M (2006) TCR zeta down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. J Immunol 177:4763–4772

    PubMed  CAS  Google Scholar 

  8. Galea I, Bechmann I, Perry VH (2007) What is immune privilege (not)? Trends Immunol 28:12–8. Epub 2006 Nov 28

    Article  PubMed  CAS  Google Scholar 

  9. Gordon LB, Knopf PM, Cserr HF (1992) Ovalbumin is more immunogenic when introduced into brain or cerebrospinal fluid than into extracerebral sites. J Neuroimmunol 40:81–87

    Article  PubMed  CAS  Google Scholar 

  10. Gordon LB, Nolan SC, Cserr HF, Knopf PM, Harling-Berg CJ (1997) Growth of P511 mastocytoma cells in BALB/c mouse brain elicits CTL response without tumor elimination: a new tumor model for regional central nervous system immunity. J Immunol 159:2399–2408

    PubMed  CAS  Google Scholar 

  11. Graf MR, Sauer JT, Merchant RE (2005) Tumor infiltration by myeloid suppressor cells in response to T cell activation in rat gliomas. J Neurooncol 73:29–36

    Article  PubMed  Google Scholar 

  12. Harling-Berg CJ, Park TJ, Knopf PM (1999) Role of the cervical lymphatics in the Th2-type hierarchy of CNS immune regulation. J Neuroimmunol 101:111–127

    Article  PubMed  CAS  Google Scholar 

  13. Ichimura T, Fraser PA, Cserr HF (1991) Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res 545:103–113

    Article  PubMed  CAS  Google Scholar 

  14. Itano AA, McSorley SJ, Reinhardt RL, Ehst BD, Ingulli E, Rudensky AY, Jenkins MK (2003) Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 19:47–57

    Article  PubMed  CAS  Google Scholar 

  15. Johnston JV, Malacko AR, Mizuno MT, McGowan P, Hellstrom I, Hellstrom KE, Marquardt H, Chen L (1996) B7-CD28 costimulation unveils the hierarchy of tumor epitopes recognized by major histocompatibility complex class I-restricted CD8+ cytolytic T lymphocytes. J Exp Med 183:791–800

    Article  PubMed  CAS  Google Scholar 

  16. Kida S, Pantazis A, Weller RO (1993) CSF drains directly from the subarachnoid space into nasal lymphatics in the rat - anatomy, histology and immunological significance. Neuropathology and Applied Neurobiology 19:480–488

    Article  PubMed  CAS  Google Scholar 

  17. Malarkannan S, Shih PP, Eden PA, Horng T, Zuberi AR, Christianson G, Roopenian D, Shastri N (1998) The molecular and functional characterization of a dominant minor H antigen, H60. J Immunol 161:3501–3509

    PubMed  CAS  Google Scholar 

  18. Masson F, Calzascia T, Di Berardino-Besson W, de Tribolet N, Dietrich PY, Walker PR (2007) Brain microenvironment promotes the final functional maturation of tumor-specific effector CD8+ T cells. J Immunol 179:845–853

    PubMed  CAS  Google Scholar 

  19. Munn DH, Mellor AL (2006) The tumor-draining lymph node as an immune-privileged site. Immunol Rev 213:146–158

    Article  PubMed  Google Scholar 

  20. Okamoto Y, Yamashita J, Hasegawa M, Fujisawa H, Yamashima T, Hashimoto T, Nonomura A, Matsumoto Y, Kida S (1999) Cervical lymph nodes play the role of regional lymph nodes in brain tumour immunity in rats. Neuropathol Appl Neurobiol 25:113–122

    Article  PubMed  CAS  Google Scholar 

  21. Roy EJ, Gawlick U, Orr BA, Rund LA, Webb AG, Kranz DM (2000) IL-12 treatment of endogenously arising murine brain tumors. J Immunol 165:7293–7299

    PubMed  CAS  Google Scholar 

  22. Shirai Y (1921) On the transplantation of the rat sarcoma in adult heterogenous animals. Jpn Med World 1:14–15

    Google Scholar 

  23. Stevenson PG, Hawke S, Sloan DJ, Bangham CRM (1997) The immunogenicity of intracerebral virus infection depends on anatomical site. J Virol 71:145–151

    PubMed  CAS  Google Scholar 

  24. Unger WW, Jansen W, Wolvers DA, van Halteren AG, Kraal G, Samsom JN (2003) Nasal tolerance induces antigen-specific CD4+CD25- regulatory T cells that can transfer their regulatory capacity to naive CD4+ T cells. Int Immunol 15:731–739

    Article  PubMed  CAS  Google Scholar 

  25. Widner H, Moller G, Johansson BB (1988) Immune response in deep cervical lymph nodes and spleen in the mouse after antigen deposition in different intracerebral sites. Scand J Immunol 28:563–571

    Article  PubMed  CAS  Google Scholar 

  26. Winkler B, Hufnagl K, Spittler A, Ploder M, Kallay E, Vrtala S, Valenta R, Kundi M, Renz H, Wiedermann U (2006) The role of Foxp3+ T cells in long-term efficacy of prophylactic and therapeutic mucosal tolerance induction in mice. Allergy 61:173–180

    Article  PubMed  CAS  Google Scholar 

  27. Wolvers DA, Coenen-de Roo CJ, Mebius RE, van der Cammen MJ, Tirion F, Miltenburg AM, Kraal G (1999) Intranasally induced immunological tolerance is determined by characteristics of the draining lymph nodes: studies with OVA and human cartilage gp-39. J Immunol 162:1994–1998

    PubMed  CAS  Google Scholar 

  28. Yamada S, DePasquale M, Patlak CS, Cserr HF (1991) Albumin outflow into deep cervical lymph from different regions of rabbit brain. Am J Physiol 261:H1197–H1204

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by PHS R21 CA110010 to EJR and a James S. McDonnell Foundation grant to DMK and EJR. We thank Dr. Paul M. Knopf for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, D.L., Kranz, D.M. & Roy, E.J. Experimental manipulations of afferent immune responses influence efferent immune responses to brain tumors. Cancer Immunol Immunother 57, 1323–1333 (2008). https://doi.org/10.1007/s00262-008-0467-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0467-8

Keywords

Navigation