Skip to main content

Advertisement

Log in

CD8+ T cells against multiple tumor-associated antigens in peripheral blood of midgut carcinoid patients

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study was to identify immunogenic HLA-A*0201-binding epitopes derived from a number of classical midgut carcinoid-associated proteins. CD8+ T cells recognizing tumor-associated antigen (TAA) epitopes are of great interest for the establishment of immunotherapy as a novel treatment for this type of malignancy.

Experimental design

Midgut carcinoid tumor specimens were microdissected and expression levels of potential TAAs were investigated by quantitative real time PCR. HLA-A*0201-binding motifs were selected using HLA peptide binding prediction algorithms and stabilization of HLA-A*0201 was verified using TAP-deficient T2 cells. Peripheral blood of midgut carcinoid patients was analyzed for peptide epitope recognition and the feasibility of generating peptide-reactive CD8+ T cells in healthy blood donors was examined by an in vitro stimulation protocol using mature DCs. Activation of patient and healthy donor CD8+ T cells was analyzed by intracellular flow cytometry staining of interferon γ.

Results

Chromogranin A (CGA), tryptophan hydroxylase 1 (TPH-1), vesicular monoamine transporter 1 (VMAT-1), caudal type homeobox transcription factor 2 (CDX-2), and islet autoantigen 2 (IA-2) are properly expressed by midgut carcinoid tumor cells, with CGA mRNA expressed to greatest level. Midgut carcinoid patients have increased frequencies of peripheral blood CD8+ T cells recognizing a pool of HLA-A*0201 peptides derived from these proteins compared to healthy age-matched individuals. Activated peptide-specific CD8+ T cells could also be generated in healthy blood donors by in vitro stimulation.

Conclusion

We have identified a number of immunogenic midgut carcinoid-associated peptide epitopes recognized by CD8+ T cells. We show that midgut carcinoid patients display immune recognition of their tumors. Memory CD8+ T cells in patient blood are of great interest when pursuing an immunotherapeutic treatment strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Åkerström G, Hellman P, Hessman O, Osmak L (2005) Management of midgut carcinoids. J Surg Oncol 89:161–169

    Article  PubMed  Google Scholar 

  2. Andersen MH, Østergaard Pedersen L, Becker JC, Straten PT (2000) Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Res 61:869–872

    Google Scholar 

  3. Anderson KS, Alexander J, Wei M, Cresswell P (1993) Intracellular transport of class I MHC molecules in antigen processing mutant cell lines. J Immunol 157:3407–3419

    Google Scholar 

  4. Boon T, Coulie PG, Van den Eynde BJ, Van der Bruggen P (2006) Human T cell responses against melanoma. Annu Rev Immunol 24:175–208

    Article  PubMed  CAS  Google Scholar 

  5. Chakraborty NG, Stevens RL, Mehrotra S, Laska E, Taxel P, Sporn JR, Schauer P, Albertsen PC (2003) Recognition of PSA-derived peptide antigens by T cells from prostate cancer patients without any prior stimulation. Cancer Immunol Immunother 52:497–505

    Article  PubMed  CAS  Google Scholar 

  6. Diethelm-Okita BM, Raju R, Okita DK, Conti-Fine BM (1997) Epitope repertoire of human CD4+ T cells on tetanus toxin: identification of immunodominant sequence segments. J Infect Dis 175:382–391

    PubMed  CAS  Google Scholar 

  7. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, Rogers LJ, Gracia GJ, Jones SA, Mangiameli DP, Pelletier MM, Gea-Banacloche J, Robinson MR, Berman DM, Filie AC, Abati A, Rosenberg SA (2005) Adoptive cell transfer following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23:2346–2357

    Article  PubMed  CAS  Google Scholar 

  8. Essand M, Vikman S, Grawe J, Gedda L, Hellberg C, Öberg K, Totterman TH, Giandomenico V (2005) Identification and characterization of a novel splicing variant of vesicular monoamine transporter 1. J Mol Endocrinol 35(3):489–501

    Article  PubMed  CAS  Google Scholar 

  9. Giandomenico V, Simonsson M, Gronroos E, Ericsson J (2003) Coactivator-dependent acetylation stabilizes members of the SREBP family of transcription factors. Mol Cell Biol 23(7):2587–2599

    Article  PubMed  CAS  Google Scholar 

  10. Ho WY, Nguyen HN, Wolfl M, Kuball J, Greenberg PD (2006) In vitro methods for generating CD8+ T-cell clones for immunotherapy from the naïve repertoire. J Immunol Methods 310:40–52

    Article  PubMed  CAS  Google Scholar 

  11. Hogan KT, Shimojo N, Walk SF, Engelhard VH, Maloy WL, Coligan JE, Biddison WE (1988) Mutations in the α2 helix of HLA-A2 affect presentation but do not inhibit binding of influenza virus matrix peptide. J Exp Med 168:725–736

    Article  PubMed  CAS  Google Scholar 

  12. Leja J, Dzojic H, Gustafson E, Öberg K, Giandomenico V, Essand M (2007) A novel chromogranin-a promoter-driven oncolytic adenovirus for midgut carcinoid therapy. Clin Cancer Res 15, 13(8):2455–2462

    Article  CAS  Google Scholar 

  13. Li F (2005) Role of survivin and its splice variants in tumorigenesis. Br J Cancer 92:212–216

    PubMed  CAS  Google Scholar 

  14. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔct) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  15. Loskog A, Dzojic H, Vikman S, Ninalga C, Essand M, Korsgren O, Totterman TH (2004) Adenovirus CD40 ligand gene therapy counteracts immune escape mechanisms in the tumor microenvironment. J Immunol 172(11):7200–7205

    PubMed  CAS  Google Scholar 

  16. Loskog A, Ninalga C, Totterman T (2006) Dendritic cells engineered to express CD40L continuously produce IL12 and resist negative signals from Tr1/Th3 dominated tumors. Cancer Immunol Immunother 55:588–597

    Article  PubMed  Google Scholar 

  17. Micke P, Ostman A, Lundeberg J, Ponten F (2005) Laser-assisted cell microdissection using the PALM System. Methods Mol Biol 293:151–166

    PubMed  CAS  Google Scholar 

  18. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129

    Article  PubMed  CAS  Google Scholar 

  19. Morse MA, Nair SK, Mosca PJ, Hobeika AC, Clay TM, Deng Y, Boczkowski D, Proia A, Neidzwiecki D, Clavien PA, Hurwitz HI, Schlom J, Gilboa E, Lyerly HK (2003) Immunotherapy with autologous, human dendritic cells transfected with carcinoembryonic antigen mRNA. Cancer Invest 21(3):341–349

    Article  PubMed  CAS  Google Scholar 

  20. Nagorsen D, Scheibenbogen C, Marincola FM, Letsch A, Keilholz U (2003) Natural T cell immunity against cancer. Clin Cancer Res 9:4296–4303

    PubMed  CAS  Google Scholar 

  21. Öberg K (2005) Neuroendocrine tumors of the gastrointestinal tract: recent advances in molecular genetics, diagnosis, and treatment. Curr Opin Oncol 17:386–391

    Article  PubMed  Google Scholar 

  22. Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152(1):163–175

    PubMed  CAS  Google Scholar 

  23. Rammensee HG, Bachmann J, Emmerich NN, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219

    Article  PubMed  CAS  Google Scholar 

  24. Redmond WL, Sherman LA (2005) Peripheral tolerance of CD8 T lymphocytes. Immunity 22:275–284

    Article  PubMed  CAS  Google Scholar 

  25. Rindi G, Klöppel G (2004) Endocrine tumors of the gut and pancreas tumor biology and classification. Neuroendocrinology 80(Suppl 1):12–15

    Article  PubMed  CAS  Google Scholar 

  26. Schmitz M, Diestelkoetter P, Weigle B, Schmachtenberg F, Stevanovic S, Ockert D, Rammensee HG, Rieber EP (2000) Generation of survivin-specific CD8+ T effector cells by dendritic cells pulsed with protein or selected peptides. Cancer Res 60:4845–4849

    PubMed  CAS  Google Scholar 

  27. Schott M, Seissler J, Feldkamp J, von Schilling C, Scherbaum WA (1999) Dendritic cell immunotherapy induces antitumor response in parathyroid carcinoma and neuroendocrine pancreas carcinoma. Horm Metab Res 31:662–664

    Article  PubMed  CAS  Google Scholar 

  28. Schott M, Seissler J, Lettmann M, Fouxon V, Scherbaum WA, Feldkamp J (2001) Immunotherapy for medullary thyroid carcinoma by dendritic cell vaccination. J Clin Endocrinol Metab 86:4965–4969

    Article  PubMed  CAS  Google Scholar 

  29. Schott M, Feldkamp J, Klucken M, Kobbe G, Scherbaum WA, Seissler J (2002) Calcitonin-specific antitumor immunity in medullary thyroid carcinoma following dendritic cell vaccination. Cancer Immunol Immunother 51:663–668

    Article  PubMed  CAS  Google Scholar 

  30. Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, Verjee SS, Jones LA, Herschberg RM (2006) Placebo-controlled phase III trial of immunologic therapy with Sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 24:3089–3094

    Article  PubMed  CAS  Google Scholar 

  31. Solcia E, Klöppel G, Sobin LH (2000) Histological typing of endocrine tumors. WHO international histological classification of tumors, 2nd edn. Springer, Berlin

    Google Scholar 

  32. Stift A, Sachet M, Yagubian R, Bittermann C, Dubsky P, Brostjan C, Pfragner R, Niederle B, Jakesz R, Gnant M, Friedl J (2004) Dendritic cell vaccination in medullary thyroid carcinoma. Clin Cancer Res 10(9):2944–2953

    Article  PubMed  CAS  Google Scholar 

  33. Takahashi K, Honeyman MC, Harrison LC (2001) Cytotoxic T cells to an epitope in the islet autoantigen IA-2 are not disease-specific. Clinical Immunology 9(3):360–364

    Article  Google Scholar 

  34. Taupenot L, Harper KL, O’Connor DT (2003) The Chromogranin-Secretogranin family. N Engl J Med 348:1134–1149

    Article  PubMed  CAS  Google Scholar 

  35. Tuettenberg A, Becker C, Huter E, Knop J, Enk AH, Jonuleit H (2006) Induction of strong and persistent Melan A/MART-1-specific immune responses by adjuvant dendritic cell-based vaccination of stage II melanoma patients. Int J Cancer 118:2617–2627

    Article  PubMed  CAS  Google Scholar 

  36. Van der Horst-Schrivers ANA, Machteld Wymenga AN, Links TP, Willemse PHB, Kema IP, de Vries EGE (2004) Complications of midgut carcinoid tumors and carcinoid syndrome. Neuroendocrinology 80(Suppl 1):28–32

    Article  PubMed  CAS  Google Scholar 

  37. Vikman S, Essand M, Cunningham JL, de la Torre M, Öberg K, Tötterman TH, Giandomenico V (2005) Gene expression in midgut carcinoid tumors: potential targets for immunotherapy. Acta Oncol 44:32–40

    Article  PubMed  CAS  Google Scholar 

  38. Whiteside TL (2003) Immune responses to malignancies. J Allergy Clin Immunol 111:S677–S686

    Article  PubMed  CAS  Google Scholar 

  39. Wierecky J, Muller MR, Wirths S, Halder-Oehler E, Dorfel D, Schmidt SM, Hantschel M, Brugger W, Schroder S, Horger MS, Kanz L, Brossart P (2006) Immunologic and clinical responses after vaccinations with peptide-pulsed dendritic cells in metastatic renal cancer patients. Cancer Res 66(11):5910–5918

    Article  PubMed  CAS  Google Scholar 

  40. Zou W (2006) Regulatory T cells, tumor immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank research nurses Monica Hurtig and Lena Olsson at the Clinic of Endocrine Oncology, Uppsala University Hospital for providing the blood samples used in this study. They also thank Dr. Mohammad Alimohammadi, Dept. of Medical Sciences, Uppsala University for sharing valuable peptides. The authors express their gratitude to Verto Institute (Stamford, CT, USA), Dr. Raymond and Beverly Sackler for financial and scientific support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Tötterman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vikman, S., Giandomenico, V., Sommaggio, R. et al. CD8+ T cells against multiple tumor-associated antigens in peripheral blood of midgut carcinoid patients. Cancer Immunol Immunother 57, 399–409 (2008). https://doi.org/10.1007/s00262-007-0382-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0382-4

Keywords

Navigation