Skip to main content

Advertisement

Log in

The absence of invariant chain in MHC II cancer vaccines enhances the activation of tumor-reactive type 1 CD4+ T lymphocytes

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Activation of tumor-reactive T lymphocytes is a promising approach for the prevention and treatment of patients with metastatic cancers. Strategies that activate CD8+ T cells are particularly promising because of the cytotoxicity and specificity of CD8+ T cells for tumor cells. Optimal CD8+ T cell activity requires the co-activation of CD4+ T cells, which are critical for immune memory and protection against latent metastatic disease. Therefore, we are developing “MHC II” vaccines that activate tumor-reactive CD4+ T cells. MHC II vaccines are MHC class I+ tumor cells that are transduced with costimulatory molecules and MHC II alleles syngeneic to the prospective recipient. Because the vaccine cells do not express the MHC II-associated invariant chain (Ii), we hypothesized that they will present endogenously synthesized tumor peptides that are not presented by professional Ii+ antigen presenting cells (APC) and will therefore overcome tolerance to activate CD4+ T cells. We now report that MHC II vaccines prepared from human MCF10 mammary carcinoma cells are more efficient than Ii+ APC for priming and boosting Type 1 CD4+ T cells. MHC II vaccines consistently induce greater expansion of CD4+ T cells which secrete more IFNγ and they activate an overlapping, but distinct repertoire of CD4+ T cells as measured by T cell receptor Vβ usage, compared to Ii+ APC. Therefore, the absence of Ii facilitates a robust CD4+ T cell response that includes the presentation of peptides that are presented by traditional APC, as well as peptides that are uniquely presented by the Ii vaccine cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Armstrong TD, Clements VK, Martin BK, Ting JP, Ostrand-Rosenberg S (1997) Major histocompatibility complex class II-transfected tumor cells present endogenous antigen and are potent inducers of tumor-specific immunity. Proc Natl Acad Sci USA 94:6886–6891

    Article  PubMed  CAS  Google Scholar 

  2. Baskar S, Glimcher L, Nabavi N, Jones RT, Ostrand-Rosenberg S (1995) Major histocompatibility complex class II+B7–1+ tumor cells are potent vaccines for stimulating tumor rejection in tumor-bearing mice. J Exp Med 181:619–629

    Article  PubMed  CAS  Google Scholar 

  3. Belz GT, Wodarz D, Diaz G, Nowak MA, Doherty PC (2002) Compromised influenza virus-specific CD8(+)-T-cell memory in CD4(+)-T-cell-deficient mice. J Virol 76:12388–12393

    Article  PubMed  CAS  Google Scholar 

  4. Benichou G, Takizawa PA, Ho PT, Killion CC, Olson CA, McMillan M, Sercarz EE (1990) Immunogenicity and tolerogenicity of self-major histocompatibility complex peptides. J Exp Med 172:1341–1346

    Article  PubMed  CAS  Google Scholar 

  5. Bennett SR, Carbone FR, Karamalis F, Miller JF, Heath WR (1997) Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J Exp Med 186:65–70

    Article  PubMed  CAS  Google Scholar 

  6. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR (1998) Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393:478–480

    Article  PubMed  CAS  Google Scholar 

  7. Bodmer H, Viville S, Benoist C, Mathis D (1994) Diversity of endogenous epitopes bound to MHC class II molecules limited by invariant chain. Science 263:1284–1286

    Article  PubMed  CAS  Google Scholar 

  8. Bosch JJ, Thompson JA, Srivastava MK, Iheagwara UK, Murray TG, Lotem M, Ksander BR, Ostrand-Rosenberg S (2007) MHC II uveal melanoma vaccines prime and boost CD4+ T lymphocytes that cross-react with primary and metastatic uveal melanoma cells. Cancer Res 67:4499–4506

    Article  PubMed  CAS  Google Scholar 

  9. Busch R, Cloutier I, Sekaly RP, Hammerling GJ (1996) Invariant chain protects class II histocompatibility antigens from binding intact polypeptides in the endoplasmic reticulum. EMBO J 15:418–428

    PubMed  CAS  Google Scholar 

  10. Busch R, Rinderknecht CH, Roh S, Lee AW, Harding JJ, Burster T, Hornell TM, Mellins ED (2005) Achieving stability through editing and chaperoning:regulation of MHC class II peptide binding and expression. Immunol Rev 207:242–260

    Article  PubMed  CAS  Google Scholar 

  11. Chamuleau ME, Souwer Y, Van Ham SM, Zevenbergen A, Westers TM, Berkhof J, Meijer CJ, van de Loosdrecht AA, Ossenkoppele GJ (2004) Class II-associated invariant chain peptide expression on myeloid leukemic blasts predicts poor clinical outcome. Cancer Res 64:5546–5550

    Article  PubMed  CAS  Google Scholar 

  12. Clements VK, Baskar S, Armstrong TD, Ostrand-Rosenberg S (1992) Invariant chain alters the malignant phenotype of MHC class II+ tumor cells. J Immunol 149:2391–2396

    PubMed  CAS  Google Scholar 

  13. Dissanayake SK, Thompson JA, Bosch JJ, Clements VK, Chen PW, Ksander BR, Ostrand-Rosenberg S (2004) Activation of tumor-specific CD4(+) T lymphocytes by major histocompatibility complex class II tumor cell vaccines: a novel cell-based immunotherapy. Cancer Res 64:1867–1874

    Article  PubMed  CAS  Google Scholar 

  14. Dolan BP, Gibbs KD, Ostrand-Rosenberg S Jr (2006) Tumor-specific CD4+ T cells are activated by “cross-dressed” dendritic cells presenting peptide-MHC class II complexes acquired from cell-based cancer vaccines. J Immunol 176:1447–1455

    PubMed  CAS  Google Scholar 

  15. Drozina G, Kohoutek J, Jabrane-Ferrat N, Peterlin BM (2005) Expression of MHC II genes. Curr Top Microbiol Immunol 290:147–170

    Article  PubMed  CAS  Google Scholar 

  16. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    Article  PubMed  CAS  Google Scholar 

  17. Gammon G, Sercarz EE, Benichou G (1991) The dominant self and the cryptic self: shaping the autoreactive T-cell repertoire. Immunol Today 12:193–195

    Article  PubMed  CAS  Google Scholar 

  18. Ganss R, Arnold B, Hammerling GJ (2004) Mini-review: overcoming tumor-intrinsic resistance to immune effector function. Eur J Immunol 34:2635–2641

    Article  PubMed  CAS  Google Scholar 

  19. Gao FG, Khammanivong V, Liu WJ, Leggatt GR, Frazer IH, Fernando GJ (2002) Antigen-specific CD4+ T-cell help is required to activate a memory CD8+ T cell to a fully functional tumor killer cell. Cancer Res 62:6438–6441

    PubMed  CAS  Google Scholar 

  20. Grakoui A, Shoukry NH, Woollard DJ, Han JH, Hanson HL, Ghrayeb J, Murthy KK, Rice CM, Walker CM (2003) HCV persistence and immune evasion in the absence of memory T cell help. Science 302:659–662

    Article  PubMed  CAS  Google Scholar 

  21. Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP (2003) CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421:852–856

    Article  PubMed  CAS  Google Scholar 

  22. Keene JA, Forman J (1982) Helper activity is required for the in vivo generation of cytotoxic T lymphocytes. J Exp Med 155:768–782

    Article  PubMed  CAS  Google Scholar 

  23. Long EO, Strubin M, Wake CT, Gross N, Carrel S, Goodfellow P, Accolla RS, Mach B (1983) Isolation of cDNA clones for the p33 invariant chain associated with HLA-DR antigens. Proc Natl Acad Sci USA 80:5714–5718

    Article  PubMed  CAS  Google Scholar 

  24. Loss GE Jr, Elias CG, Fields PE, Ribaudo RK, McKisic M, Sant AJ (1993) Major histocompatibility complex class II-restricted presentation of an internally synthesized antigen displays cell-type variability and segregates from the exogenous class II and endogenous class I presentation pathways. J Exp Med 178:73–85

    Article  PubMed  CAS  Google Scholar 

  25. Martin WD, Hicks GG, Mendiratta SK, Leva HI, Ruley HE, Van Kaer L (1996) H2-M mutant mice are defective in the peptide loading of class II molecules, antigen presentation, and T cell repertoire selection. Cell 84:543–550

    Article  PubMed  CAS  Google Scholar 

  26. Menetrier-Caux C, Montmain G, Dieu MC, Bain C, Favrot MC, Caux C, Blay JY (1998) Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92:4778–4791

    PubMed  CAS  Google Scholar 

  27. Menetrier-Caux C, Thomachot MC, Alberti L, Montmain G, Blay JY (2001) IL-4 prevents the blockade of dendritic cell differentiation induced by tumor cells. Cancer Res 61:3096–3104

    PubMed  CAS  Google Scholar 

  28. Muntasell A, Carrascal M, Alvarez I, Serradell L, van Veelen P, Verreck FA, Koning F, Abian J, Jaraquemada D (2004) Dissection of the HLA-DR4 peptide repertoire in endocrine epithelial cells: strong influence of invariant chain and HLA-DM expression on the nature of ligands. J Immunol 173:1085–1093

    PubMed  CAS  Google Scholar 

  29. Ostrand-Rosenberg S, Thakur A, Clements V (1990) Rejection of mouse sarcoma cells after transfection of MHC class II genes. J Immunol 144:4068–4071

    PubMed  CAS  Google Scholar 

  30. Pulaski B, Ostrand-Rosenberg S (1998) MHC class II and B7.1 immunotherapeutic cell-based vaccine reduces spontaneous mammary carcinoma metastases without affecting primary tumor growth. Cancer Res 58:1486–1493

    PubMed  CAS  Google Scholar 

  31. Pulaski B, Clements V, Pipeling M, Ostrand-Rosenberg S (2000) Immunotherapy with vaccines combining MHC class II/CD80+ tumor cells with IL-12 reduces established metastatic disease and stimulates immune effectors and monokine-induced by interferon-gamma. Canc Immunol Immunother 49:34–45

    Article  CAS  Google Scholar 

  32. Qi L, Ostrand-Rosenberg S (2000) MHC class II presentation of endogenous tumor antigen by cellular vaccines depends on the endocytic pathway but not H2-M. Traffic 1:152–160

    Article  PubMed  CAS  Google Scholar 

  33. Qi L, Rojas JM, Ostrand-Rosenberg S (2000) Tumor cells present MHC class II-restricted nuclear and mitochondrial antigens and are the predominant antigen presenting cells in vivo. J Immunol 165:5451–5461

    PubMed  CAS  Google Scholar 

  34. Qin Z, Blankenstein T (2000) CD4+ T cell–mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity 12:677–686

    Article  PubMed  CAS  Google Scholar 

  35. Qin Z, Schwartzkopff J, Pradera F, Kammertoens T, Seliger B, Pircher H, Blankenstein T (2003) A critical requirement of interferon gamma-mediated angiostasis for tumor rejection by CD8+ T cells. Cancer Res 63:4095–4100

    PubMed  CAS  Google Scholar 

  36. Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393:474–478

    Article  PubMed  CAS  Google Scholar 

  37. Rock KL, Shen L (2005) Cross-presentation: underlying mechanisms and role in immune surveillance. Immunol Rev 207:166–183

    Article  PubMed  CAS  Google Scholar 

  38. Rosenberg SA (2004) Shedding light on immunotherapy for cancer. N Engl J Med 350:1461–1463

    Article  PubMed  CAS  Google Scholar 

  39. Schild H, Rotzschke O, Kalbacher H, Rammensee HG (1990) Limit of T cell tolerance to self proteins by peptide presentation. Science 247:1587–1589

    Article  PubMed  CAS  Google Scholar 

  40. Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393:480–483

    Article  PubMed  CAS  Google Scholar 

  41. Shedlock DJ, Shen H (2003) Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300:337–339

    Article  PubMed  CAS  Google Scholar 

  42. Sotomayor EM, Borrello I, Rattis FM, Cuenca AG, Abrams J, Staveley-O’Carroll K, Levitsky HI (2001) Cross-presentation of tumor antigens by bone marrow-derived antigen-presenting cells is the dominant mechanism in the induction of T-cell tolerance during B-cell lymphoma progression. Blood 98:1070–1077

    Article  PubMed  CAS  Google Scholar 

  43. Staveley-O’Carroll K, Sotomayor E, Montgomery J, Borrello I, Hwang L, Fein S, Pardoll D, Levitsky H (1998) Induction of antigen-specific T cell anergy: an early event in the course of tumor progression. Proc Natl Acad Sci USA 95:1178–1183

    Article  PubMed  CAS  Google Scholar 

  44. Sun JC, Bevan MJ (2003) Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300:339–342

    Article  PubMed  CAS  Google Scholar 

  45. Sun JC, Williams MA, Bevan MJ (2004) CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 5:927–933

    Article  PubMed  CAS  Google Scholar 

  46. Tamori Y, Tan X, Nakagawa K, Takai E, Akagi J, Kageshita T, Egami H, Ogawa M (2005) Clinical significance of MHC class II-associated invariant chain expression in human gastric carcinoma. Oncol Rep 14:873–877

    PubMed  CAS  Google Scholar 

  47. Thompson JA, Dissanayake SK, Ksander BR, Knutson KL, Disis ML, Ostrand-Rosenberg S (2006) Tumor cells transduced with the MHC class II Transactivator and CD80 activate tumor-specific CD4+ T cells whether or not they are silenced for invariant chain. Cancer Res 66:1147–1154

    Article  PubMed  CAS  Google Scholar 

  48. Veenstra H, Jacobs P, Dowdle EB (1996) Abnormal association between invariant chain and HLA class II alpha and beta chains in chronic lymphocytic leukemia. Cell Immunol 171:68–73

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Grant Support: NIH R01CA84232 and R01CA115880 (SOR); NIH R01EY016486 (BRK). JAT is supported by DOD Breast Cancer Program pre-doctoral fellowship DAMD17-03-0337. JJB is partially supported by a Fight for Sight, Inc., post doctoral fellowship, and the following Dutch foundations: Rotterdamse Vereniging Blindenbelangen, Stichting Blindenhulp, Stichting Blinden-Penning, Stichting Dondersfonds, Stichting Nelly Reef Fund, Gratama Stichting, Stichting Admiraal van Kinsbergen Fonds, and Foundation ‘De Drie Lichten.’ We thank Dr. Dean Mann for providing the healthy donor PBMC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Ostrand-Rosenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, J.A., Srivastava, M.K., Bosch, J.J. et al. The absence of invariant chain in MHC II cancer vaccines enhances the activation of tumor-reactive type 1 CD4+ T lymphocytes. Cancer Immunol Immunother 57, 389–398 (2008). https://doi.org/10.1007/s00262-007-0381-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0381-5

Keywords

Navigation