Cancer Immunology, Immunotherapy

, Volume 57, Issue 3, pp 347–358 | Cite as

Cyclooxygenase-2 independent effects of cyclooxygenase-2 inhibitors on oxidative stress and intracellular glutathione content in normal and malignant human B-cells

  • Elizabeth P. Ryan
  • Timothy P. Bushnell
  • Alan E. Friedman
  • Irfan Rahman
  • Richard P. Phipps
Original Article

Abstract

We recently reported that inhibition of Cyclooxygenase-2 (Cox-2) reduced human B-CLL proliferation and survival. Herein, we investigated the mechanisms whereby small molecule Cox-2 selective inhibitors, SC-58125 (a Celebrex analog) and CAY10404 blunt survival of human B-cell lymphomas and chronic lymphocytic leukemia B-cells. SC-58125 and OSU03012 (a Celebrex analog that lacks Cox-2 inhibitory activity) both decreased intracellular glutathione (GSH) content in malignant human B-cells, as well as in Cox-2 deficient mouse B-cells. This new finding supports Cox-2 independent effects of SC-58125. Interestingly, SC-58125 also significantly increased B-cell reactive oxygen species (ROS) production, suggesting that ROS are a pathway that reduces malignant cell survival. Addition of GSH ethyl ester protected B lymphomas from the increased mitochondrial membrane permeability and reduced survival induced by SC-58125. Moreover, the SC-58125-mediated GSH depletion resulted in elevated steady-state levels of the glutamate cysteine ligase catalytic subunit mRNA and protein. These new findings of increased ROS and diminished GSH levels following SC-58125 exposure support novel mechanisms whereby a Cox-2 selective inhibitor reduces malignant B-cell survival. These observations also support the concept that certain Cox-2 selective inhibitors may have therapeutic value in combination with other drugs to kill malignant B lineage cells.

Keywords

Cox-2 Oxidative stress Glutathione Lymphoma B-cells 

Abbreviations

Cox-2

Cyclooxygenase-2

GSH

Glutathione

ROS

Reactive oxygen species

GCL

Glutamate cysteine ligase

References

  1. 1.
    Singh B, Berry JA, Shoher A, Ramakrishnan V, Lucci A (2005) COX-2 overexpression increases motility and invasion of breast cancer cells. Int J Oncol 26:1393–1399PubMedGoogle Scholar
  2. 2.
    Chen Q, Shinohara N, Abe T, Watanabe T, Nonomura K, Koyanagi T (2004) Significance of COX-2 expression in human renal cell carcinoma cell lines. Int J Cancer 108:825–832PubMedCrossRefGoogle Scholar
  3. 3.
    Dubois RN (2000) Review article: cyclooxygenase—a target for colon cancer prevention. Aliment Pharmacol Ther 14(Suppl 1):64–67PubMedCrossRefGoogle Scholar
  4. 4.
    Samoha S, Arber N (2005) Cyclooxygenase-2 inhibition prevents colorectal cancer: from the bench to the bed side. Oncology 69(Suppl 1):33–37PubMedCrossRefGoogle Scholar
  5. 5.
    Nakao S, Kuwano T, Tsutsumi-Miyahara C, Ueda S, Kimura YN, Hamano S, Sonoda KH, Saijo Y, Nukiwa T, Strieter RM, Ishibashi T, Kuwano M, Ono M (2005) Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1beta-induced neovascularization and tumor growth. J Clin Invest 115:2979–2991PubMedCrossRefGoogle Scholar
  6. 6.
    Zhi YH, Liu RS, Song MM, Tian Y, Long J, Tu W, Guo RX (2005) Cyclooxygenase-2 promotes angiogenesis by increasing vascular endothelial growth factor and predicts prognosis in gallbladder carcinoma. World J Gastroenterol 11:3724–3728PubMedGoogle Scholar
  7. 7.
    Ito H, Duxbury M, Benoit E, Clancy TE, Zinner MJ, Ashley SW, Whang EE (2004) Prostaglandin E2 enhances pancreatic cancer invasiveness through an Ets-1-dependent induction of matrix metalloproteinase-2. Cancer Res 64:7439–7446PubMedCrossRefGoogle Scholar
  8. 8.
    Park JH, Kang KH, Kim SH, Lee JH, Cho CM, Kweon YO, Kim SK, Choi YH, Bae HI, Kim MS (2005) Expression of Cyclooxygenase-2 and Bcl-2 in human gastric adenomas. Korean J Intern Med 20:198–204PubMedGoogle Scholar
  9. 9.
    Charames GS, Bapat B (2006) Cyclooxygenase-2 knockdown by RNA interference in colon cancer. Int J Oncol 28:543–549PubMedGoogle Scholar
  10. 10.
    Han S, Roman J (2006) COX-2 inhibitors suppress lung cancer cell growth by inducing p21 via COX-2 independent signals. Lung Cancer 51(3):283–296PubMedCrossRefGoogle Scholar
  11. 11.
    Palayoor ST, Arayankalayil MJ, Shoaibi A, Coleman CN (2005) Radiation sensitivity of human carcinoma cells transfected with small interfering RNA Targeted against cyclooxygenase-2. Clin Cancer Res 11:6980–6986PubMedCrossRefGoogle Scholar
  12. 12.
    Arico S, Pattingre S, Bauvy C, Gane P, Barbat A, Codogno P, Ogier-Denis E (2002) Celecoxib induces apoptosis by inhibiting 3-phosphoinositide-dependent protein kinase-1 activity in the human colon cancer HT-29 cell line. J Biol Chem 277:27613–27621PubMedCrossRefGoogle Scholar
  13. 13.
    Johnson AJ, Hsu AL, Lin HP, Song X, Chen CS (2002) The cyclo-oxygenase-2 inhibitor celecoxib perturbs intracellular calcium by inhibiting endoplasmic reticulum Ca2+-ATPases: a plausible link with its anti-tumour effect and cardiovascular risks. Biochem J 366:831–837PubMedGoogle Scholar
  14. 14.
    Maier TJ, Janssen A, Schmidt R, Geisslinger G, Grosch S (2005) Targeting the beta-catenin/APC pathway: a novel mechanism to explain the cyclooxygenase-2-independent anticarcinogenic effects of celecoxib in human colon carcinoma cells. Faseb J 19:1353–1355PubMedGoogle Scholar
  15. 15.
    Weber A, Casini A, Heine A, Kuhn D, Supuran CT, Scozzafava A, Klebe G (2004) Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. J Med Chem 47:550–557PubMedCrossRefGoogle Scholar
  16. 16.
    Zhu J, Song X, Lin HP, Young DC, Yan S, Marquez VE, Chen CS (2002) Using cyclooxygenase-2 inhibitors as molecular platforms to develop a new class of apoptosis-inducing agents. J Natl Cancer Inst 94:1745–1757PubMedGoogle Scholar
  17. 17.
    Phipps RP, Ryan E, Bernstein SH (2004) Inhibition of cyclooxygenase-2: a new targeted therapy for B-cell lymphoma? Leuk Res 28:109–111PubMedCrossRefGoogle Scholar
  18. 18.
    Hazar B, Ergin M, Seyrek E, Erdogan S, Tuncer I, Hakverdi S (2004) Cyclooxygenase-2 (Cox-2) expression in lymphomas. Leuk Lymphoma 45:1395–1399PubMedCrossRefGoogle Scholar
  19. 19.
    Wun T, McKnight H, Tuscano JM (2004) Increased cyclooxygenase-2 (COX-2): a potential role in the pathogenesis of lymphoma. Leuk Res 28:179–190PubMedCrossRefGoogle Scholar
  20. 20.
    Secchiero P, Barbarotto E, Gonelli A, Tiribelli M, Zerbinati C, Celeghini C, Agostinelli C, Pileri SA, Zauli G (2005) Potential pathogenetic implications of cyclooxygenase-2 overexpression in B chronic lymphoid leukemia cells. Am J Pathol 167:1599–1607PubMedGoogle Scholar
  21. 21.
    Ryan EP, Pollock SJ, Kaur K, Felgar RE, Bernstein SH, Chiorrazi N, Phipps RP (2006) Constitutive and activation-inducible cyclooxygenase-2 expression enhances survival of chronic lymphocytic leukemia B cells. Clin Immunol 120(1):76–90PubMedCrossRefGoogle Scholar
  22. 22.
    Armstrong JS, Steinauer KK, Hornung B, Irish JM, Lecane P, Birrell GW, Peehl DM, Knox SJ (2002) Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line. Cell Death Differ 9:252–263PubMedCrossRefGoogle Scholar
  23. 23.
    Ferraris AM, Rolfo M, Mangerini R, Gaetani GF (1994) Increased glutathione in chronic lymphocytic leukemia lymphocytes. Am J Hematol 47:237–238PubMedCrossRefGoogle Scholar
  24. 24.
    Margalit A, Hauser SD, Zweifel BS, Anderson MA, Isakson PC (1998) Regulation of prostaglandin biosynthesis in vivo by glutathione. Am J Physiol 274:R294–R302PubMedGoogle Scholar
  25. 25.
    Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF (2003) The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 66:1499–1503PubMedCrossRefGoogle Scholar
  26. 26.
    Fedyk ER, Phipps RP (1994) Reactive oxygen species and not lipoxygenase products are required for mouse B-lymphocyte activation and differentiation. Int J Immunopharmacol 16:533–546PubMedCrossRefGoogle Scholar
  27. 27.
    Padilla J, Leung E, Phipps RP (2002) Human B lymphocytes and B lymphomas express PPAR-gamma and are killed by PPAR-gamma agonists. Clin Immunol 103:22–33PubMedCrossRefGoogle Scholar
  28. 28.
    Ryan EP, Pollack SJ, Murant TI, Bernstein SH, Felgar RE, Phipps RP (2005) Activated human B lymphocytes express cyclooxygenase-2 and cyclooxygenase inhibitors attenuate antibody production. J Immunol 174:2619–2626PubMedGoogle Scholar
  29. 29.
    Kehry MR, Castle BE (1994) Regulation of CD40 ligand expression and use of recombinant CD40 ligand for studying B cell growth and differentiation. Semin Immunol 6:287–294PubMedCrossRefGoogle Scholar
  30. 30.
    Capone ML, Tacconelli S, Sciulli MG, Patrignani P (2003) Clinical pharmacology of selective COX-2 inhibitors. Int J Immunopathol Pharmacol 16:49–58PubMedGoogle Scholar
  31. 31.
    Johnson AJ, Smith LL, Zhu J, Heerema NA, Jefferson S, Mone A, Grever M, Chen CS, Byrd JC (2005) A novel celecoxib derivative, OSU03012, induces cytotoxicity in primary CLL cells and transformed B-cell lymphoma cell line via a caspase- and Bcl-2-independent mechanism. Blood 105:2504–2509PubMedCrossRefGoogle Scholar
  32. 32.
    Eady JJ, Orta T, Dennis MF, Stratford MR, Peacock JH (1995) Glutathione determination by the Tietze enzymatic recycling assay and its relationship to cellular radiation response. Br J Cancer 72:1089–1095PubMedGoogle Scholar
  33. 33.
    Staal FJ, Roederer M, Herzenberg LA, Herzenberg LA (1990) Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc Natl Acad Sci USA 87:9943–9947PubMedCrossRefGoogle Scholar
  34. 34.
    Cerimele F, Battle T, Lynch R, Frank DA, Murad E, Cohen C, Macaron N, Sixbey J, Smith K, Watnick RS, Eliopoulos A, Shehata B, Arbiser JL (2005) Reactive oxygen signaling and MAPK activation distinguish Epstein-Barr Virus (EBV)-positive versus EBV-negative Burkitt’s lymphoma. Proc Natl Acad Sci USA 102:175–179PubMedCrossRefGoogle Scholar
  35. 35.
    Zhou Y, Hileman EO, Plunkett W, Keating MJ, Huang P (2003) Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents. Blood 101:4098–4104PubMedCrossRefGoogle Scholar
  36. 36.
    George TC, Fanning SL, Fitzgeral-Bocarsly P, Medeiros RB, Highfill S, Shimizu Y, Hall BE, Frost K, Basiji D, Ortyn WE, Morrissey PJ, Lynch DH (2006) Quantitative measurement of nuclear translocation events using similarity analysis of multispectral cellular images obtained in flow. J Immunol Methods 311:117–129PubMedCrossRefGoogle Scholar
  37. 37.
    Ortyn WE, Hall BE, George TC, Frost K, Basiji DA, Perry DJ, Zimmerman CA, Coder D, Morrissey PJ (2006) Sensitivity measurement and compensation in spectral imaging. Cytometry A 69:852–862PubMedGoogle Scholar
  38. 38.
    Ray DM, Akbiyik F, Phipps RP (2006) The peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) ligands 15-deoxy-{delta}12,14-prostaglandin J2 and ciglitazone induce human B lymphocyte and B cell lymphoma apoptosis by PPAR{gamma}-independent mechanisms. J Immunol 177:5068–5076PubMedGoogle Scholar
  39. 39.
    Inoue H, Takemura H, Kawai Y, Yoshida A, Ueda T, Miyashita T (2002) Dexamethasone-resistant human Pre-B leukemia 697 cell line evolving elevation of intracellular glutathione level: an additional resistance mechanism. Jpn J Cancer Res 93:582–590PubMedGoogle Scholar
  40. 40.
    Seelig GF, Simondsen RP, Meister A (1984) Reversible dissociation of gamma-glutamylcysteine synthetase into two subunits. J Biol Chem 259:9345–9347PubMedGoogle Scholar
  41. 41.
    Rahman I, Bel A, Mulier B, Lawson MF, Harrison DJ, Macnee W, Smith CA (1996) Transcriptional regulation of gamma-glutamylcysteine synthetase-heavy subunit by oxidants in human alveolar epithelial cells. Biochem Biophys Res Commun 229:832–837PubMedCrossRefGoogle Scholar
  42. 42.
    Schumacker PT (2006) Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10:175–176PubMedCrossRefGoogle Scholar
  43. 43.
    Ding H, Han C, Zhu J, Chen CS, D’Ambrosio SM (2005) Celecoxib derivatives induce apoptosis via the disruption of mitochondrial membrane potential and activation of caspase 9. Int J Cancer 113:803–810PubMedCrossRefGoogle Scholar
  44. 44.
    Jendrossek V, Handrick R, Belka C (2003) Celecoxib activates a novel mitochondrial apoptosis signaling pathway. Faseb J 17:1547–1549PubMedGoogle Scholar
  45. 45.
    Johnson AJ, Smith LL, Zhu J, Heerema NA, Jefferson S, Mone A, Grever M, Chen CS, Byrd JC (2005) A novel celecoxib derivative, OSU03012, induces cytotoxicity in primary CLL cells and transformed B-cell lymphoma via a caspase and Bcl-2 independent mechanism. Blood 15; 105(6):2504–2509Google Scholar
  46. 46.
    Zhong H, Willard M, Simons J (2004) NS398 reduces hypoxia-inducible factor (HIF)-1alpha and HIF-1 activity: multiple-level effects involving cyclooxygenase-2 dependent and independent mechanisms. Int J Cancer 112:585–595PubMedCrossRefGoogle Scholar
  47. 47.
    Carew JS, Zhou Y, Albitar M, Carew JD, Keating MJ, Huang P (2003) Mitochondrial DNA mutations in primary leukemia cells after chemotherapy: clinical significance and therapeutic implications. Leukemia 17:1437–1447PubMedCrossRefGoogle Scholar
  48. 48.
    Nilsson J, Soderberg O, Nilsson K, Rosen A (2004) Differentiation-associated redox-regulation in human B cell lines from stem cell/pro-B to plasma cell. Immunol Lett 94:83–89PubMedCrossRefGoogle Scholar
  49. 49.
    Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN (1998) Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93:705–716PubMedCrossRefGoogle Scholar
  50. 50.
    Chu AJ, Chou TH, Chen BD (2004) Prevention of colorectal cancer using COX-2 inhibitors: basic science and clinical applications. Front Biosci 9:2697–2713PubMedCrossRefGoogle Scholar
  51. 51.
    Chang ET, Zheng T, Weir EG, Borowitz M, Mann RB, Spiegelman D, Mueller NE (2004) Aspirin and the risk of Hodgkin’s lymphoma in a population-based case-control study. J Natl Cancer Inst 96:305–315PubMedCrossRefGoogle Scholar
  52. 52.
    Beiderbeck AB, Holly EA, Sturkenboom MC, Coebergh JW, Stricker BH, Leufkens HG (2003) Prescription medications associated with a decreased risk of non-Hodgkin’s Lymphoma. Am J Epidemiol 157:510–516Google Scholar
  53. 53.
    Ellen T, Chang KEmS, Henrik Hjalgrim, Claudia Schöllkopf, Anna, Porwit-MacDonald CSm, Edneia Tani, Francesco d’Amore, Mads Melbye, Hans-Olov Adami aBG (2005) Medication use and risk of non-Hodgkin’s Lymphoma. Am J Epidemiol 162:965–974Google Scholar
  54. 54.
    Rao CV, Reddy BS (2004) NSAIDs and chemoprevention. Curr Cancer Drug Targets 4:29–42PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Elizabeth P. Ryan
    • 1
  • Timothy P. Bushnell
    • 2
  • Alan E. Friedman
    • 1
  • Irfan Rahman
    • 1
  • Richard P. Phipps
    • 1
  1. 1.Department of Environmental Medicine, Lung Biology and Disease ProgramUniversity of Rochester School of Medicine and DentistryRochesterUSA
  2. 2.Department of Pediatrics, Center for Pediatric Biomedical ResearchUniversity of Rochester School of Medicine and DentistryRochesterUSA

Personalised recommendations