Skip to main content

Advertisement

Log in

Development of anti-PAX3 immune responses; a target for cancer immunotherapy

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

PAX3 is overexpressed in several human cancers and is absent from normal adult human tissues. It is known to have an oncogenic function in human malignancy, and is therefore a promising target for cancer immunotherapy. We screened the murine and human PAX3 amino acid sequences for peptides that bind common MHC class I types, and identified murine GVFINGRPL and human KLTEARVQV sequences. Mice immunised with either a selected PAX3 peptide, or with a PAX3 expressing DNA vector, developed specific anti-PAX3 immune responses that inhibited tumour growth. The intensity of the immune response was significantly enhanced by pulsing of the peptide onto dendritic cells. Anti-PAX3 T cell lines were established from splenocytes of immunised mice. Intravenous administration of anti-PAX3 T cells caused regression of established tumours indicating a promising clinical application for anti-PAX3 immunotherapy. The human peptide stimulated growth of similar T cell lines from peripheral blood of three out of three normal human blood donors. These showed specific cytotoxicity against a range of human PAX3+ and HLA-A2+ cancer cell lines. Moreover, an anti-PAX3 response was detected as a component of the anti-tumour immune response in a patient treated with lysate pulsed dendritic cell vaccination. The ability to generate strong and specific anti PAX3 immune responses from the T cell repertoire in both mice and humans, provides evidence for PAX3 as a promising target for immunotherapy of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

76-9-P3F:

PAX3-FKHR stably transfected into 76-9 cell line

References

  1. Dudley ME, Rosenberg SA (2003) Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat Rev Cancer 3(9):666–675

    Article  PubMed  CAS  Google Scholar 

  2. Dudley ME et al (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23(10):2346–2357

    Article  PubMed  CAS  Google Scholar 

  3. Correale P et al (1997) In vitro generation of human cytotoxic T lymphocytes specific for peptides derived from prostate-specific antigen. J Natl Cancer Inst 89(4):293–300

    Article  PubMed  CAS  Google Scholar 

  4. Gao L et al (2000) Selective elimination of leukemic CD34 (+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 95(7):2198–2203

    PubMed  CAS  Google Scholar 

  5. Overwijk WW et al (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8 + T cells. J Exp Med 198(4):569–580

    Article  PubMed  CAS  Google Scholar 

  6. Brentjens RJ et al (2003) Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 9(3):279–286

    Article  PubMed  CAS  Google Scholar 

  7. Goulding MD et al (1991) Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. Embo J 10(5):1135–1147

    PubMed  CAS  Google Scholar 

  8. Barr FG et al (1999) Predominant expression of alternative PAX3 and PAX7 forms in myogenic and neural tumor cell lines. Cancer Res 59(21):5443–5448

    PubMed  CAS  Google Scholar 

  9. Parker CJ et al (2004) Expression of PAX 3 alternatively spliced transcripts and identification of two new isoforms in human tumors of neural crest origin. Int J Cancer 108(2):314–320

    Article  PubMed  CAS  Google Scholar 

  10. Muratovska A et al (2003) Paired-Box genes are frequently expressed in cancer and often required for cancer cell survival. Oncogene 22(39):7989–7997

    Article  PubMed  CAS  Google Scholar 

  11. Galili N et al (1993) Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 5(3):230–235

    Article  PubMed  CAS  Google Scholar 

  12. Barr FG et al (1996) In vivo amplification of the PAX3-FKHR and PAX7-FKHR fusion genes in alveolar rhabdomyosarcoma. Hum Mol Genet 5(1):15–21

    Article  PubMed  CAS  Google Scholar 

  13. Xia SJ, Barr FG (2004) Analysis of the transforming and growth suppressive activities of the PAX3-FKHR oncoprotein. Oncogene 23(41):6864–6871

    Article  PubMed  CAS  Google Scholar 

  14. Scheidler S et al (1996) The hybrid PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma transforms fibroblasts in culture. Proc Natl Acad Sci USA 93(18):9805–9809

    Article  PubMed  CAS  Google Scholar 

  15. Keller C et al (2004) Pax3:Fkhr interferes with embryonic Pax3 and Pax7 function: implications for alveolar rhabdomyosarcoma cell of origin. Genes Dev 18(21):2608–2613

    Article  PubMed  CAS  Google Scholar 

  16. Bernasconi M et al (1996) Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc Natl Acad Sci USA 93(23):13164–13169

    Article  PubMed  CAS  Google Scholar 

  17. Scholl FA et al (2001) PAX3 is expressed in human melanomas and contributes to tumor cell survival. Cancer Res 61(3):823–826

    PubMed  CAS  Google Scholar 

  18. Sadovnikova E et al (1998) Generation of human tumor-reactive cytotoxic T cells against peptides presented by non-self HLA class I molecules. Eur J Immunol 28(1):193–200

    Article  PubMed  CAS  Google Scholar 

  19. Evans R et al (1993) Intratumor gene expression after adoptive immunotherapy in a murine tumor model Regulation of messenger RNA levels associated with the differential expansion of tumor-infiltrating lymphocytes. J Immunol 150(1):177–184

    PubMed  CAS  Google Scholar 

  20. Nabarro S et al (2005) Coordinated oncogenic transformation and inhibition of host immune responses by the PAX3-FKHR fusion oncoprotein. J Exp Med 202(10):1399–1410

    Article  PubMed  CAS  Google Scholar 

  21. Kojima Y et al (2002) Adjuvant effect of multi-CpG motifs on an HIV-1 DNA vaccine. Vaccine 20(23–24):2857–2865

    Article  PubMed  CAS  Google Scholar 

  22. Himoudi N et al (2002) Comparative vaccine studies in HLA-A2.1-transgenic mice reveal a clustered organization of epitopes presented in hepatitis C virus natural infection. J Virol 76(24):12735–12746

    Article  PubMed  CAS  Google Scholar 

  23. Schultze JL et al (1997) CD40-activated human B cells: an alternative source of highly efficient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy. J Clin Invest 100(11):2757–2765

    Article  PubMed  CAS  Google Scholar 

  24. WilleReece U et al (2006) Toll-like receptor agonists influence the magnitude and quality of memory T cell responses after prime-boost immunization in nonhuman primates. J Exp Med 203(5):1249–1258

    Article  CAS  Google Scholar 

  25. Speiser DE et al (2005) Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest 115(3):739–746

    Article  PubMed  CAS  Google Scholar 

  26. May KF Jr et al (2002) Anti-4-1BB monoclonal antibody enhances rejection of large tumor burden by promoting survival but not clonal expansion of tumor-specific CD8+ T cells. Cancer Res 62(12):3459–3465

    PubMed  CAS  Google Scholar 

  27. Hanson HL et al (2000) Eradication of established tumors by CD8+ T cell adoptive immunotherapy. Immunity 13(2):265–276

    Article  PubMed  CAS  Google Scholar 

  28. Klebanoff CA et al (2004) IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci USA 101(7):1969–1974

    Article  PubMed  CAS  Google Scholar 

  29. Ko K et al (2005) Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3 + CD25 + CD4 +  regulatory T cells. J Exp Med 202(7):885–891

    Article  PubMed  CAS  Google Scholar 

  30. Gattinoni L et al (2005) Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 202(7):907–912

    Article  PubMed  CAS  Google Scholar 

  31. Nakajima H et al (1997) The common cytokine receptor gamma chain plays an essential role in regulating lymphoid homeostasis. J Exp Med 185(2):189–195

    Article  PubMed  CAS  Google Scholar 

  32. Schluns KS et al (2000) Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol 1(5):426–432

    Article  PubMed  CAS  Google Scholar 

  33. Prlic M, Lefrancois L, Jameson SC (2002) Multiple choices: regulation of memory CD8 T cell generation and homeostasis by interleukin (IL)-7 and IL-15. J Exp Med 195(12):F49–F52

    Article  PubMed  CAS  Google Scholar 

  34. Judge AD et al (2002) Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8 (+) T cells. J Exp Med 196(7):935–946

    Article  PubMed  CAS  Google Scholar 

  35. Zeng R et al (2005) Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med 201(1):139–148

    Article  PubMed  CAS  Google Scholar 

  36. Loser K et al (2005) An important role of CD80/CD86-CTLA-4 signaling during photocarcinogenesis in mice. J Immunol 174(9):5298–5305

    PubMed  CAS  Google Scholar 

  37. Mokyr MB et al (1998) Realization of the therapeutic potential of CTLA-4 blockade in low-dose chemotherapy-treated tumor-bearing mice. Cancer Res 58(23):5301–5304

    PubMed  CAS  Google Scholar 

  38. Bristol JA, Schlom J, Abrams SI (1999) Persistence, immune specificity, and functional ability of murine mutant ras epitope-specific CD4 (+) and CD8 (+) T lymphocytes following in vivo adoptive transfer. Cell Immunol 194(1):78–89

    Article  PubMed  CAS  Google Scholar 

  39. van den Broeke LT et al (2006) Identification and epitope enhancement of a PAX-FKHR fusion protein breakpoint epitope in alveolar rhabdomyosarcoma cells created by a tumorigenic chromosomal translocation inducing CTL capable of lysing human tumors. Cancer Res 66(3):1818–1823

    Article  PubMed  CAS  Google Scholar 

  40. Rodeberg DA et al (2006) Generation of tumoricidal PAX3 peptide antigen specific cytotoxic T lymphocytes. Int J Cancer 119(1):126–132

    Article  PubMed  CAS  Google Scholar 

  41. Davis RJ, Barr FG (1997) Fusion genes resulting from alternative chromosomal translocations are overexpressed by gene-specific mechanisms in alveolar rhabdomyosarcoma. Proc Natl Acad Sci USA 94(15):8047–8051

    Article  PubMed  CAS  Google Scholar 

  42. Goldstein M et al (2006) Novel genes implicated in embryonal, alveolar, and pleomorphic rhabdomyosarcoma: a cytogenetic and molecular analysis of primary tumors. Neoplasia 8(5):332–343

    Article  PubMed  CAS  Google Scholar 

  43. He SJ et al (2005) Transfection of melanoma cells with antisense PAX3 oligonucleotides additively complements cisplatin-induced cytotoxicity. Mol Cancer Ther 4(6):996–1003

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors have no conflicting financial interests. Thanks to Dr A Anderson for critical reading of the manuscript. Supported by grants from Cancer Research UK, SPARKS, Leukaemia Research Fund, Wellcome Trust and RICC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Anderson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

262_2007_294_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Himoudi, N., Nabarro, S., Yan, M. et al. Development of anti-PAX3 immune responses; a target for cancer immunotherapy. Cancer Immunol Immunother 56, 1381–1395 (2007). https://doi.org/10.1007/s00262-007-0294-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0294-3

Keywords

Navigation