Skip to main content

Advertisement

Log in

The Thomsen-Friedenreich disaccharide as antigen for in vivo tumor targeting with multivalent scFvs

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The Thomsen-Friedenreich disaccharide (TFα) is a promising antigen for tumor immunotargeting, since it is almost exclusively expressed on carcinoma tissues. So far, an obstacle preventing the exploitation of TF for immunotargeting has been the lack of suitable (non-IgM) antibodies with high affinity and specificity. Recently we reported on a novel strategy for generating antibodies toward small uncharged carbohydrates and the generation of recombinant antibodies toward TF. Among them, two multivalent scFv antibodies showed sub-micromolar functional affinities and appeared well suited for immunotargeting. In the present study, the trimeric scFv(1aa) and the tetrameric scFv(0aa) have been further developed for radioimmunotargeting. The scFvs were radiolabeled with 111In using DTPA as chelator without losing binding activity or molecular stoichiometry. Binding affinities as high as 1 × 10−7 M toward TF displayed on living cells were determined. Antibody biodistribution and tumor targeting efficacy were studied in TF-positive human breast cancer (ZR-75-1) bearing mice. TF was successfully targeted in vivo with tumor uptakes of ∼11 and 8% ID/g after 24 h for the trimeric and tetrameric scFv, respectively. These results validate TF as a potent antigen for tumor targeting. The biodistribution of the scFvs was comparable to that reported for IgGs. In contrast to the IgGs, the serum clearance of the scFvs was very fast, which could be an advantage in a therapeutic setting. Furthermore, kidney uptake, which is often critical for small recombinant antibodies labeled with radio-metals, was low with the tetramer (11% ID/g). We conclude that the multimeric anti-TF scFvs are promising candidates to be further developed toward therapeutic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

aa:

Amino acid

DTPA:

Diethylenetriamine pentaacetic acid

PAA:

Polyacrylamide

RIA:

Radioimmunoassay

scFv:

Single chain fragment variable

TF:

Thomsen-Friedenreich antigen

TLC:

Thin layer chromatography

VH and VL :

Variable domain of heavy chain and light chain, respectively

% ID/g:

Per cent injected dose per gram organ

N :

Number of individual experiments

References

  1. Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, Marks JD, Weiner LM (2001) High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 61:4750–4755

    PubMed  CAS  Google Scholar 

  2. Behr TM, Sharkey RM, Juweid ME, Blumenthal RD, Dunn RM, Griffiths GL, Bair HJ, Wolf FG, Becker WS, Goldenberg DM (1995) Reduction of the renal uptake of radiolabeled monoclonal antibody fragments by cationic amino acids and their derivatives. Cancer Res 55:3825–3834

    PubMed  CAS  Google Scholar 

  3. Behr TM, Sharkey RM, Sgouros G, Blumenthal RD, Dunn RM, Kolbert K, Griffiths GL, Siegel JA, Becker WS, Goldenberg DM (1997) Overcoming the nephrotoxicity of radiometal-labeled immunoconjugates: improved cancer therapy administered to a nude mouse model in relation to the internal radiation dosimetry. Cancer 80:2591–2610

    Article  PubMed  CAS  Google Scholar 

  4. Cao Y, Karsten U, Liebrich W, Haensch W, Springer GF, Schlag PM (1995) Expression of Thomsen-Friedenreich-related antigens in primary and metastatic colorectal carcinomas: a reevaluation. Cancer 76:1700–1708

    Article  PubMed  CAS  Google Scholar 

  5. Cao Y, Stosiek P, Springer GF, Karsten U (1996) Thomsen-Friedenreich-related carbohydrate antigens in normal adult human tissues: a systematic and comparative study. Histochem Cell Biol 106:197–207

    PubMed  CAS  Google Scholar 

  6. Clarke K, Lee FT, Brechbiel MW, Smyth FE, Old LJ, Scott AM (2000) In vivo biodistribution of a humanized anti-Lewis Y monoclonal antibody (hu3S193) in MCF-7 xenografted BALB/c nude mice. Cancer Res 60:4804–4811

    PubMed  CAS  Google Scholar 

  7. Fukuda M, Lauffenburger M, Sasaki H, Rogers ME, Dell A (1987) Structures of novel sialylated O-linked oligosaccharides isolated from human erythrocyte glycophorins. J Biol Chem 262:11952–11957

    PubMed  CAS  Google Scholar 

  8. Goldenberg DM (2003) Advancing role of radiolabeled antibodies in the therapy of cancer. Cancer Immunol Immunother 52:281–296

    PubMed  CAS  Google Scholar 

  9. Goletz S, Cao Y, Danielczyk A, Ravn P, Schoeber U, Karsten U (2003) Thomsen-Friedenreich antigen: the “hidden” tumor antigen. Adv Exp Med Biol 535:147–162

    PubMed  CAS  Google Scholar 

  10. Graff CP, Wittrup KD (2003) Theoretical analysis of antibody targeting of tumor spheroids: importance of dosage for penetration, and affinity for retention. Cancer Res 63:1288–1296

    PubMed  CAS  Google Scholar 

  11. Holliger P, Prospero T, Winter G (1993) “Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci USA 90:6444–6448

    Article  PubMed  CAS  Google Scholar 

  12. Hudson PJ, Souriau C (2003) Engineered antibodies. Nat Med 9:129–134

    Article  PubMed  CAS  Google Scholar 

  13. Hull SR, Carraway KL (1988) Mechanism of expression of Thomsen-Friedenreich (T) antigen at the cell surface of a mammary adenocarcinoma. FASEB J 2:2380–2384

    PubMed  CAS  Google Scholar 

  14. Jain RK (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47:3039–3051

    PubMed  CAS  Google Scholar 

  15. Jain RK, Baxter LT (1988) Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res 48:7022–7032

    PubMed  CAS  Google Scholar 

  16. Juweid M, Neumann R, Paik C, Perez-Bacete MJ, Sato J, van Osdol W, Weinstein JN (1992) Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res 52:5144–5153

    PubMed  CAS  Google Scholar 

  17. Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn PA (1984) Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods 72:77–89

    Article  PubMed  CAS  Google Scholar 

  18. Lloyd KO, Burchell J, Kudryashov V, Yin BW, Taylor-Papadimitriou J (1996) Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. Demonstration of simpler and fewer glycan chains in tumor cells. J Biol Chem 271:33325–33334

    Article  PubMed  CAS  Google Scholar 

  19. Lub-de Hooge MN, Kosterink JG, Perik PJ, Nijnuis H, Tran L, Bart J, Suurmeijer AJ, de Jong S, Jager PL, de Vries EG (2004) Preclinical characterisation of 111In-DTPA-trastuzumab. Br J Pharmacol 143:99–106

    Article  PubMed  CAS  Google Scholar 

  20. Mackenzie R, To R (1998) The role of valency in the selection of anti-carbohydrate single-chain Fvs from phage display libraries. J Immunol Methods 220:39–49

    Article  PubMed  CAS  Google Scholar 

  21. Potamianos S, Varvarigou AD, Archimandritis SC (2000) Radioimmunoscintigraphy and radioimmunotherapy in cancer: principles and application. Anticancer Res 20:925–948

    PubMed  CAS  Google Scholar 

  22. Ravn P, Danielczyk A, Jensen KB, Kristensen P, Christensen PA, Larsen M, Karsten U, Goletz S (2004) Multivalent scFv display of phagemid repertoires for the selection of carbohydrate-specific antibodies and its application to the Thomsen-Friedenreich antigen. J Mol Biol 343:985–996

    Article  PubMed  CAS  Google Scholar 

  23. Rogers BE, Franano FN, Duncan JR, Edwards WB, Anderson CJ, Connett JM, Welch MJ (1995) Identification of metabolites of 111In-diethylenetriaminepentaacetic acid-monoclonal antibodies and antibody fragments in vivo. Cancer Res 55:5714s–5720s

    PubMed  CAS  Google Scholar 

  24. Slovin SF, Ragupathi G, Musselli C, Fernandez C, Diani M, Verbel D, Danishefsky S, Livingston P, Scher HI (2005) Thomsen-Friedenreich (TF) antigen as a target for prostate cancer vaccine: clinical trial results with TF cluster (c)-KLH plus QS21 conjugate vaccine in patients with biochemically relapsed prostate cancer. Cancer Immunol Immunother 54:694–702

    Article  PubMed  CAS  Google Scholar 

  25. Springer GF (1984) T and Tn, general carcinoma autoantigens. Science 224:1198–1206

    Article  PubMed  CAS  Google Scholar 

  26. Springer GF (1997) Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J Mol Med 75:594–602

    Article  PubMed  CAS  Google Scholar 

  27. Tahtis K, Lee FT, Smyth FE, Power BE, Renner C, Brechbiel MW, Old LJ, Hudson PJ, Scott AM (2001) Biodistribution properties of (111)indium-labeled C-functionalized trans-cyclohexyl diethylenetriaminepentaacetic acid humanized 3S193 diabody and F(ab’)(2) constructs in a breast carcinoma xenograft model. Clin Cancer Res 7:1061–1072

    PubMed  CAS  Google Scholar 

  28. Todorovska A, Roovers RC, Dolezal O, Kortt AA, Hoogenboom HR, Hudson PJ (2001) Design and application of diabodies, triabodies and tetrabodies for cancer targeting. J Immunol Methods 248:47–66

    Article  PubMed  CAS  Google Scholar 

  29. Pisano A, Redmond JW, Williams KL, Gooley AA (1993) Glycosylation sites identified by solid-phase Edman degradation: O-linked glycosylation motifs on human glycophorin A. Glycobiology 3:429–435

    Article  PubMed  CAS  Google Scholar 

  30. Tsai SW, Li L, Williams LE, Anderson AL, Raubitschek AA, Shively JE (2001) Metabolism and renal clearance of 111In-labeled DOTA-conjugated antibody fragments. Bioconjug Chem 12:264–270

    Article  PubMed  CAS  Google Scholar 

  31. van Osdol W, Fujimori K, Weinstein JN (1991) An analysis of monoclonal antibody distribution in microscopic tumor nodules: consequences of a “binding site barrier”. Cancer Res 51:4776–4784

    PubMed  Google Scholar 

  32. von Mehren M, Adams GP, Weiner LM (2003) Monoclonal antibody therapy for cancer. Annu Rev Med 54:343–369

    Article  CAS  Google Scholar 

  33. Weinstein JN, van OsdolW (1992) Early intervention in cancer using monoclonal antibodies and other biological ligands: micropharmacology and the “binding site barrier”. Cancer Res 52:2747s–2751s

    PubMed  CAS  Google Scholar 

  34. Willuda J, Honegger A, Waibel R, Schubiger PA, Stahel R, Zangemeister-Wittke U, Pluckthun A (1999) High thermal stability is essential for tumor targeting of antibody fragments: engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment. Cancer Res 59:5758–5767

    PubMed  CAS  Google Scholar 

  35. Willuda J, Kubetzko S, Waibel R, Schubiger PA, Zangemeister-Wittke U, Pluckthun A (2001) Tumor targeting of mono-, di-, and tetravalent anti-p185(HER-2) miniantibodies multimerized by self-associating peptides. J Biol Chem 276:14385–14392

    PubMed  CAS  Google Scholar 

  36. Yazaki PJ, Wu AM, Tsai SW, Williams LE, Ikler DN, Wong JY, Shively JE, Raubitschek AA (2001) Tumor targeting of radiometal labeled anti-CEA recombinant T84.66 diabody and t84.66 minibody: comparison to radioiodinated fragments. Bioconjug Chem 12:220–228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Danish Research Training Council (Forskeruddannelsesrådet), NEMOD Biotherapeutics GmbH & Co.KG, and Glycotope GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Goletz.

Electronic supplementary material

Fig7

Supplementary Fig. 1 DTPA conjugation conditions and quality analysis after conjugation. ac Binding activity of the scFv(1aa) after incubation in three different buffers used during the DTPA conjugation at different temperatures (N = 2). d Size exclusion chromatography of the chelated versus the nonchelated scFv(1aa). e Binding activity of the chelated versus the nonchelated scFv(1aa) to asialoglycophorin

Fig8

Supplementary Fig. 2 Quality analysis of 111In labeling. a Thin layer chromatography of labeled protein. Lanes: 1, free 111In; 2, 111In-labeled unbound DTPA (111In in excess); 3, 111In-labeled scFv(1aa). b Radiography of SDS-PAGE. 111In-labeled scFv(1aa) was loaded on SDS-PAGE and visualised via radiography. c Size exclusion chromatography. 111In-labeled scFv(1aa) and an 111In-labeled control mouse IgG were examined in size exclusion chromatography

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravn, P., Stahn, R., Danielczyk, A. et al. The Thomsen-Friedenreich disaccharide as antigen for in vivo tumor targeting with multivalent scFvs. Cancer Immunol Immunother 56, 1345–1357 (2007). https://doi.org/10.1007/s00262-007-0292-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0292-5

Keywords

Navigation