Skip to main content

Advertisement

Log in

Increased blood spermine levels decrease the cytotoxic activity of lymphokine-activated killer cells: a novel mechanism of cancer evasion

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Increased blood polyamine levels, often observed in cancer patients, have negative impacts on patient prognosis and are associated with tumor progression. The purpose of our study was to examine the effects of polyamines on cellular immune function. Peripheral blood mononuclear cells (PBMCs) from healthy volunteers were cultured with the human natural polyamines spermine, spermidine, or putrescine, and the effects on immune cell function were examined. The correlation between post-operative changes in blood polyamine levels and lymphokine-activated killer (LAK) activity was also examined in cancer patients. Spermine decreased the adhesion of non-stimulated PBMCs to tissue culture plastic in a dose- and a time-dependent manner without affecting cell viability or activity. This decrease in adhesion capacity was accompanied by a decrease in the number of CD11a bright-positive and CD56 bright-positive cells. Upon stimulation with interleukin 2 to activate LAK cytotoxicity, PBMCs cultured overnight with 100 or 500 μM spermine showed decreased cytotoxic activity against Daudi cells (91.5 ± 1.7 and 84.9 ± 3.0%, respectively (n = 6) compared to PBMC cultured without polyamines). In a group of 25 cancer patients, changes in blood spermine levels after surgery were negatively correlated with changes in LAK cytotoxicity after surgery (r = −0.510, P = 0.008: n = 25). Increased blood spermine levels may be an important factor in the suppression of anti-tumor immune cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PBMCs:

Peripheral blood mononuclear cells

TNF:

Tumor necrosis factor

RBC:

Red blood cell

LAK:

Lymphokine activated killer

LFA-1:

Leukocyte function-associated antigen-1

HPLC:

High performance liquid chromatography

FITC:

Fluorescein isothiocyanate

PE:

Phycoerythrin

ICAMs:

Intercellular adhesion molecules

References

  1. Balch CM, Itoh K, Tilden AB (1985) Cellular immune defects in patients with melanoma involving interleukin-2-activated lymphocyte cytotoxicity and a serum suppressor factor. Surgery 98:151–157

    PubMed  CAS  Google Scholar 

  2. Becciolini A, Porciani S, Lanini A, Balzi M, Cionini L, Bandettini L (1991) Polyamine levels in healthy and tumor tissues of patients with colon adenocarcinoma. Dis Colon Rectum 34:167–173

    Article  PubMed  CAS  Google Scholar 

  3. Bowlin TL, McKown BJ, Sunkara PS (1987) The effect of alpha-difluoromethylornithine, an inhibitor of polyamine biosynthesis, on mitogen-induced interleukin 2 production. Immunopharmacology 13:143–147

    Article  PubMed  CAS  Google Scholar 

  4. Chamaillard L, Quemener V, Havouis R, Moulinoux JP (1993) Polyamine deprivation stimulates natural killer cell activity in cancerous mice. Anticancer Res 13:1027–1033

    PubMed  CAS  Google Scholar 

  5. Cipolla BG, Ziade J, Bansard JY, Moulinoux JP, Staerman F, Quemener V, Lobel B, Guille F (1996) Pretherapeutic erythrocyte polyamine spermine levels discriminate high risk relapsing patients with M1 prostate carcinoma. Cancer 78:1055–1065

    Article  PubMed  CAS  Google Scholar 

  6. Cohen LF, Lundgren DW, Farrell PM (1976) Distribution of spermidine and spermine in blood from cystic fibrosis patients and control subjects. Blood 48:469–475

    PubMed  CAS  Google Scholar 

  7. Colombatto S, Fasulo L, Fulgosi B, Grillo MA (1990) Transport and metabolism of polyamines in human lymphocytes. Int J Biochem 22:489–492

    Article  PubMed  CAS  Google Scholar 

  8. Cooper KD, Shukla JB, Rennert OM (1978) Polyamine compartmentalization in various human disease states. Clin Chim Acta 82:1–7

    Article  PubMed  CAS  Google Scholar 

  9. Ellis TM, Fisher RI (1989) Functional heterogeneity of Leu 19 “bright” + and Leu 19 “dim” + lymphokine-activated killer cells. J Immunol 142:2949–2954

    PubMed  CAS  Google Scholar 

  10. Espi A, Arenas J, Garcia-Granero E, Marti E, Lledo S (1996) Relationship of curative surgery on natural killer cell activity in colorectal cancer. Dis Colon Rectum 39:429–434

    Article  PubMed  CAS  Google Scholar 

  11. Ferrini S, Sforzini S, Cambiaggi A, Poggi A, Meazza R, Canevari S, Colnaghi MI, Moretta L (1994) The LFA-1/ICAM cell adhesion pathway is involved in tumor-cell lysis mediated by bispecific monoclonal-antibody-targeted T lymphocytes. Int J Cancer 56:846–852

    Article  PubMed  CAS  Google Scholar 

  12. Funk J, Schmitz G, Failing K, Burkhardt E (2005) Natural killer (NK) and lymphokine-activated killer (LAK) cell functions from healthy dogs and 29 dogs with a variety of spontaneous neoplasms. Cancer Immunol Immunother 54:87–92

    Article  PubMed  CAS  Google Scholar 

  13. Grosser N, Marti JH, Proctor JW, Thomson DM (1976) Tube leukocyte adherence inhibition assay for the detection of anti-tumor immunity. I. Monocyte is the reactive cell. Int J Cancer 18:39–47

    Article  PubMed  CAS  Google Scholar 

  14. Hasko G, Kuhel DG, Marton A, Nemeth ZH, Deitch EA, Szabo C (2000) Spermine differentially regulates the production of interleukin-12 p40 and interleukin-10 and suppresses the release of the T helper 1 cytokine interferon-gamma. Shock 14:144–149

    Article  PubMed  CAS  Google Scholar 

  15. Heriot AG, Marriott JB, Cookson S, Kumar D, Dalgleish AG (2000) Reduction in cytokine production in colorectal cancer patients: association with stage and reversal by resection. Br J Cancer 82:1009–1012

    Article  PubMed  CAS  Google Scholar 

  16. Hermann GG, Petersen KR, Steven K, Zeuthen J (1990) Reduced LAK cytotoxicity of peripheral blood mononuclear cells in patients with bladder cancer: decreased LAK cytotoxicity caused by a low incidence of CD56+ and CD57+ mononuclear blood cells. J Clin Immunol 10:311–320

    Article  PubMed  CAS  Google Scholar 

  17. Hersey P, Bindon C, Czerniecki M, Spurling A, Wass J, McCarthy WH (1983) Inhibition of interleukin 2 production by factors released from tumor cells. J Immunol 131:2837–2842

    PubMed  CAS  Google Scholar 

  18. Hersh EM, Gschwind C, Morris DL, Murphy S (1982) Deficient strongly adherent monocytes in the peripheral blood of cancer patients. Cancer Immunol Immunother 14:105–109

    PubMed  CAS  Google Scholar 

  19. Lee RK, Spielman J, Zhao DY, Olsen KJ, Podack ER (1996) Perforin, Fas ligand, and tumor necrosis factor are the major cytotoxic molecules used by lymphokine-activated killer cells. J Immunol 157:1919–1925

    PubMed  CAS  Google Scholar 

  20. Leveque J, Foucher F, Havouis R, Desury D, Grall JY, Moulinoux JP (2000) Benefits of complete polyamine deprivation in hormone responsive and hormone resistant MCF-7 human breast adenocarcinoma in vivo. Anticancer Res 20:97–101

    PubMed  CAS  Google Scholar 

  21. Linsalata M, Caruso MG, Leo S, Guerra V, D’Attoma B, Di Leo A (2002) Prognostic value of tissue polyamine levels in human colorectal carcinoma. Anticancer Res 22:2465–2469

    PubMed  Google Scholar 

  22. Loser C, Folsch UR, Paprotny C, Creutzfeldt W (1990) Polyamines in colorectal cancer. Evaluation of polyamine concentrations in the colon tissue, serum, and urine of 50 patients with colorectal cancer. Cancer 65:958–966

    Article  PubMed  CAS  Google Scholar 

  23. Lotzova E, Savary CA, Totpal K, Schachner J, Lichtiger B, McCredie KB, Freireich EJ (1991) Highly oncolytic adherent lymphocytes: therapeutic relevance for leukemia. Leuk Res 15:245–254

    Article  PubMed  CAS  Google Scholar 

  24. McCarthy MA, Michalski JP, Sears ES, McCombs CC (1990) Inhibition of polyamine synthesis suppresses human lymphocyte proliferation without decreasing cytokine production or interleukin 2 receptor expression. Immunopharmacology 20:11–20

    Article  PubMed  CAS  Google Scholar 

  25. Monson JR, Ramsden C, Guillou PJ (1986) Decreased interleukin-2 production in patients with gastrointestinal cancer. Br J Surg 73:483–486

    Article  PubMed  CAS  Google Scholar 

  26. Mori M, Gotoh T (2004) Arginine metabolic enzymes, nitric oxide and infection. J Nutr 134:2820S–2825S

    PubMed  CAS  Google Scholar 

  27. Mule JJ, Shu S, Schwarz SL, Rosenberg SA (1984) Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science 225:1487–1489

    Article  PubMed  CAS  Google Scholar 

  28. Nishiguchi S, Tamori A, Koh N, Fujimoto S, Takeda T, Shiomi S, Oka H, Yano Y, Otani S, Kuroki T (2002) Erythrocyte-binding polyamine as a tumor growth marker for human hepatocellular carcinoma. Hepatogastroenterology 49:504–507

    PubMed  Google Scholar 

  29. Rampone B, Rampone A, Tirabasso S, Panariello S, Rampone N (2001) Immunological variations in women suffering from ovarian cancer. Influence of radical surgical treatment. Minerva Ginecol 53:116–119

    PubMed  CAS  Google Scholar 

  30. Rosenberg SA, Mule JJ, Spiess PJ, Reichert CM, Schwarz SL (1985) Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med 161:1169–1188

    Article  PubMed  CAS  Google Scholar 

  31. Seiler N, Sarhan S, Grauffel C, Jones R, Knodgen B, Moulinoux JP (1990) Endogenous and exogenous polyamines in support of tumor growth. Cancer Res 50:5077–5083

    PubMed  CAS  Google Scholar 

  32. Siegel JP, Sharon M, Smith PL, Leonard WJ (1987) The IL-2 receptor beta chain (p70): role in mediating signals for LAK, NK, and proliferative activities. Science 238:75–78

    Article  PubMed  CAS  Google Scholar 

  33. Soda K, Kano Y, Nakamura T, Kasono K, Kawakami M, Konishi F (2005) Spermine, a natural polyamine, suppresses LFA-1 expression on human lymphocyte. J Immunol 175:237–245

    PubMed  CAS  Google Scholar 

  34. Soda K, Kano Y, Nakamura T, Kawakami M, Konishi F (2003) Spermine and spermidine induce some of the immune suppression observed in cancer patients. Ann Cancer Res Ther 11:243–253

    Google Scholar 

  35. Taylor DD, Bender DP, Gercel-Taylor C, Stanson J, Whiteside TL (2001) Modulation of TcR/CD3-zeta chain expression by a circulating factor derived from ovarian cancer patients. Br J Cancer 84:1624–1629

    Article  PubMed  CAS  Google Scholar 

  36. Uehara N, Shirakawa S, Uchino H, Saeki Y (1980) Elevated contents of spermidine and spermine in the erythrocytes of cancer patients. Cancer 45:108–111

    Article  PubMed  CAS  Google Scholar 

  37. Upp JR Jr, Saydjari R, Townsend CM Jr, Singh P, Barranco SC, Thompson JC (1988) Polyamine levels and gastrin receptors in colon cancers. Ann Surg 207:662–669

    Article  PubMed  CAS  Google Scholar 

  38. Wacholtz MC, Patel SS, Lipsky PE (1989) Leukocyte function-associated antigen 1 is an activation molecule for human T cells. J Exp Med 170:431–448

    Article  PubMed  CAS  Google Scholar 

  39. Walters JD, Wojcik MS (1994) Polyamine transport in human promyelocytic leukemia cells and polymorphonuclear leukocytes. Leuk Res 18:703–708

    Article  PubMed  CAS  Google Scholar 

  40. Weil-Hillman G, Fisch P, Prieve AF, Sosman JA, Hank JA, Sondel PM (1989) Lymphokine-activated killer activity induced by in vivo interleukin 2 therapy: predominant role for lymphocytes with increased expression of CD2 and leu19 antigens but negative expression of CD16 antigens. Cancer Res 49:3680–3688

    PubMed  CAS  Google Scholar 

  41. Wood NL, Kitces EN, Blaylock WK (1990) Depressed lymphokine activated killer cell activity in mycosis fungoides. A possible marker for aggressive disease. Arch Dermatol 126:907–913

    Article  PubMed  CAS  Google Scholar 

  42. Zhang M, Caragine T, Wang H, Cohen PS, Botchkina G, Soda K, Bianchi M, Ulrich P, Cerami A, Sherry B, Tracey KJ (1997) Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: a counterregulatory mechanism that restrains the immune response. J Exp Med 185:1759–1768

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniyasu Soda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kano, Y., Soda, K., Nakamura, T. et al. Increased blood spermine levels decrease the cytotoxic activity of lymphokine-activated killer cells: a novel mechanism of cancer evasion. Cancer Immunol Immunother 56, 771–781 (2007). https://doi.org/10.1007/s00262-006-0229-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0229-4

Keywords

Navigation