Skip to main content

Advertisement

Log in

Tumor specific phage particles promote tumor regression in a mouse melanoma model

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Within cancer research, phage display libraries have been widely used for the identification of tumor targeting peptides and antibodies. Additionally, phages are known to be highly immunogenic; therefore we evaluated the immunotherapeutic potential of tumor specific phages to treat established solid tumors in a mouse model of melanoma. We developed two tumor specific phages, one derived from a peptide phage display library and one Fab expressing phage with known specificity, for the treatment of mice bearing palpable B16-F10 or B16/A2Kb tumors. Therapy in B16-F10 tumor bearing mice with tumor specific phages was superior to treatment with non-tumor specific phages and lead to delayed tumor growth and increased survival. In B16/A2Kb tumor bearing mice, therapy with tumor specific phages resulted in complete tumor regression and long-term survival in 50% of the mice. Histological analysis of tumors undergoing treatment with tumor specific phages revealed that phage administration induced a massive infiltration of polymorphonuclear neutrophils. Furthermore, phages induced secretion of IL-12 (p70) and IFN-γ as measured in mouse splenocyte culture supernatants. These results demonstrate a novel, immunotherapeutic cancer treatment showing that tumor specific phages can promote regression of established tumors by recruitment of inflammatory cells and induction of Th1 cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aida Y, Pabst MJ (1990) Removal of endotoxin from protein solutions by phase separation using Triton X-114. J Immunol Methods 132:191–195

    Article  PubMed  CAS  Google Scholar 

  2. Anderson DR, Grillo-Lopez A, Varns C, Chambers KS, Hanna N (1997) Targeted anti-cancer therapy using rituximab, a chimaeric anti-CD20 antibody (IDEC-C2B8) in the treatment of non-Hodgkin’s B-cell lymphoma. Biochem Soc Trans 25:705–708

    PubMed  CAS  Google Scholar 

  3. Arap W, Haedicke W, Bernasconi M, Kain R, Rajotte D, Krajewski S, Ellerby HM, Bredesen DE, Pasqualini R, Ruoslahti E (2002) Targeting the prostate for destruction through a vascular address. Proc Natl Acad Sci USA 99:1527–1531

    Article  PubMed  CAS  Google Scholar 

  4. Barbas CF 3rd, Wagner J (1995) Synthetic human antibodies: selecting and evolving functional proteins. Methods 8:94–103

    Article  CAS  Google Scholar 

  5. Barbas CF 3rd, Kang AS, Lerner RA, Benkovic SJ (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci USA 88:7978–7982

    Article  PubMed  CAS  Google Scholar 

  6. Baselga J (2001) Herceptin alone or in combination with chemotherapy in the treatment of HER2-positive metastatic breast cancer: pivotal trials. Oncology 61(Suppl. 2):14–21

    Article  PubMed  CAS  Google Scholar 

  7. Bennett DC, Cooper PJ, Hart IR (1987) A line of non-tumorigenic mouse melanocytes, syngeneic with the B16 melanoma and requiring a tumour promoter for growth. Int J Cancer 39:414–418

    Article  PubMed  CAS  Google Scholar 

  8. Bloch H (1940) Experimental investigation of the relationship between bacteriophage and malignant tumors. Arch Gesamte Virusforsch 1:481–496

    Article  Google Scholar 

  9. Blue CE, Spiller OB, Blackbourn DJ (2004) The relevance of complement to virus biology. Virology 319:176–184

    Article  PubMed  CAS  Google Scholar 

  10. Burton DR, Barbas CF 3rd, Persson MA, Koenig S, Chanock RM, Lerner RA (1991) A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc Natl Acad Sci USA 88:10134–10137

    Article  PubMed  CAS  Google Scholar 

  11. Curiel TJ, Morris C, Brumlik M, Landry SJ, Finstad K, Nelson A, Joshi V, Hawkins C, Alarez X, Lackner A, Mohamadzadeh M (2004) Peptides identified through phage display direct immunogenic antigen to dendritic cells. J Immunol 172:7425–7431

    PubMed  CAS  Google Scholar 

  12. Dabrowska K, Opolski A, Wietrzyk J, Switala-Jelen K, Boratynski J, Nasulewicz A, Lipinska L, Chybicka A, Kujawa M, Zabel M, Dolinska-Krajewska B, Piasecki E, Weber-Dabrowska B, Rybka J, Salwa J, Wojdat E, Nowaczyk M, Gorski A (2004) Antitumor activity of bacteriophages in murine experimental cancer models caused possibly by inhibition of beta3 integrin signaling pathway. Acta Virol 48:241–248

    PubMed  CAS  Google Scholar 

  13. Dabrowska K, Opolski A, Wietrzyk J, Switala-Jelen K, Godlewska J, Boratynski J, Syper D, Weber-Dabrowska B, Gorski A (2004) Anticancer activity of bacteriophage T4 and its mutant HAP1 in mouse experimental tumour models. Anticancer Res 24:3991–3995

    PubMed  CAS  Google Scholar 

  14. Fogelman I, Davey V, Ochs HD, Elashoff M, Feinberg MB, Mican J, Siegel JP, Sneller M, Lane HC (2000) Evaluation of CD4+ T cell function In vivo in HIV-infected patients as measured by bacteriophage phiX174 immunization. J Infect Dis 182:435–441

    Article  PubMed  CAS  Google Scholar 

  15. Fossati G, Bucknall RC, Edwards SW (2002) Insoluble and soluble immune complexes activate neutrophils by distinct activation mechanisms: changes in functional responses induced by priming with cytokines. Ann Rheum Dis 61:13–19

    Article  PubMed  CAS  Google Scholar 

  16. Fuchs EJ, Matzinger P (1996) Is cancer dangerous to the immune system? Semin Immunol 8:271–280

    Article  PubMed  CAS  Google Scholar 

  17. Hayashi F, Means TK, Luster AD (2003) Toll-like receptors stimulate human neutrophil function. Blood 102:2660–2669

    Article  PubMed  CAS  Google Scholar 

  18. Huse WD, Sastry L, Iverson SA, Kang AS, Alting-Mees M, Burton DR, Benkovic SJ, Lerner RA (1989) Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246:1275–1281

    Article  PubMed  CAS  Google Scholar 

  19. Irvine KR, Parkhurst MR, Shulman EP, Tupesis JP, Custer M, Touloukian CE, Robbins PF, Yafal AG, Greenhalgh P, Sutmuller RP, Offringa R, Rosenberg SA, Restifo NP (1999) Recombinant virus vaccination against “self-antigens using anchor-fixed immunogens. Cancer Res 59:2536–2540

    PubMed  CAS  Google Scholar 

  20. Jiang H, Wang Z, Serra D, Frank MM, Amalfitano A (2004) Recombinant adenovirus vectors activate the alternative complement pathway, leading to the binding of human complement protein C3 independent of anti-ad antibodies. Mol Ther 10:1140–1142

    Article  PubMed  CAS  Google Scholar 

  21. Krag DN, Fuller SP, Oligino L, Pero SC, Weaver DL, Soden AL, Hebert C, Mills S, Liu C, Peterson D (2002) Phage-displayed random peptide libraries in mice: toxicity after serial panning. Cancer Chemother Pharmacol 50:325–332

    Article  PubMed  CAS  Google Scholar 

  22. Landon LA, Deutscher SL (2003) Combinatorial discovery of tumor targeting peptides using phage display. J Cell Biochem 90:509–517

    Article  PubMed  CAS  Google Scholar 

  23. Mori K, Kubo T, Kibayashi Y, Ohkuma T, Kaji A (1996) Anti-vaccinia virus effect of M13 bacteriophage DNA. Antiviral Res 31:79–86

    Article  PubMed  CAS  Google Scholar 

  24. Mutuberria R, Satijn S, Huijbers A, Van Der Linden E, Lichtenbeld H, Chames P, Arends JW, Hoogenboom HR (2004) Isolation of human antibodies to tumor-associated endothelial cell markers by in vitro human endothelial cell selection with phage display libraries. J Immunol Methods 287:31–47

    Article  PubMed  CAS  Google Scholar 

  25. Pasqualini R, Ruoslahti E (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380:364–366

    Article  PubMed  CAS  Google Scholar 

  26. Popkov M, Rader C, Barbas CF 3rd (2004) Isolation of human prostate cancer cell reactive antibodies using phage display technology. J Immunol Methods 291:137–151

    Article  PubMed  CAS  Google Scholar 

  27. Romanov VI, Durand DB, Petrenko VA (2001) Phage display selection of peptides that affect prostate carcinoma cells attachment and invasion. Prostate 47:239–251

    Article  PubMed  CAS  Google Scholar 

  28. Sanz L, Cuesta AM, Compte M, Alvarez-Vallina L (2005) Antibody engineering: facing new challenges in cancer therapy. Acta Pharmacol Sin 26:641–648

    Article  PubMed  CAS  Google Scholar 

  29. Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA (2000) The neutrophil as a cellular source of chemokines. Immunol Rev 177:195–203

    Article  PubMed  CAS  Google Scholar 

  30. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  PubMed  CAS  Google Scholar 

  31. Soltes G, Barker H, Marmai K, Pun E, Yuen A, Wiersma EJ (2003) A new helper phage and phagemid vector system improves viral display of antibody Fab fragments and avoids propagation of insert-less virions. J Immunol Methods 274:233–244

    Article  PubMed  CAS  Google Scholar 

  32. Suresh M, Molina H, Salvato MS, Mastellos D, Lambris JD, Sandor M (2003) Complement component 3 is required for optimal expansion of CD8 T cells during a systemic viral infection. J Immunol 170:788–794

    PubMed  CAS  Google Scholar 

  33. Tordsson JM, Ohlsson LG, Abrahmsen LB, Karlstrom PJ, Lando PA, Brodin TN (2000) Phage-selected primate antibodies fused to superantigens for immunotherapy of malignant melanoma. Cancer Immunol Immunother 48:691–702

    Article  PubMed  CAS  Google Scholar 

  34. Trepel M, Arap W, Pasqualini R (2001) Modulation of the immune response by systemic targeting of antigens to lymph nodes. Cancer Res 61:8110–8112

    PubMed  CAS  Google Scholar 

  35. Trevani AS, Chorny A, Salamone G, Vermeulen M, Gamberale R, Schettini J, Raiden S, Geffner J (2003) Bacterial DNA activates human neutrophils by a CpG-independent pathway. Eur J Immunol 33:3164–3174

    Article  PubMed  CAS  Google Scholar 

  36. Willis AE, Perham RN, Wraith D (1993) Immunological properties of foreign peptides in multiple display on a filamentous bacteriophage. Gene 128:79–83

    Article  PubMed  CAS  Google Scholar 

  37. Wu Y, Wan Y, Bian J, Zhao J, Jia Z, Zhou L, Zhou W, Tan Y (2002) Phage display particles expressing tumor-specific antigens induce preventive and therapeutic anti-tumor immunity in murine p815 model. Int J Cancer 98:748–753

    Article  PubMed  CAS  Google Scholar 

  38. Yip YL, Hawkins NJ, Smith G, Ward RL (1999) Biodistribution of filamentous phage-Fab in nude mice. J Immunol Methods 225:171–178

    Article  PubMed  CAS  Google Scholar 

  39. Zimecki M, Weber-Dabrowska B, Lusiak-Szelachowska M, Mulczyk M, Boratynski J, Pozniak G, Syper D, Gorski A (2003) Bacteriophages provide regulatory signals in mitogen-induced murine splenocyte proliferation. Cell Mol Biol Lett 8:699–711

    PubMed  Google Scholar 

Download references

Acknowledgments

Financial support: This work was supported partly by grants from the Cancer Society in Stockholm, the Swedish Cancer Society, Karolinska Institute Funds, the Swedish Research Council (Medical Branch), the EU 6-FP “ALLOSTEM-(LSHB-CT-2004-503319), the EU 6-FP “ENACT-and US Department of Defense Prostate Cancer Research Program (PC030958).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredrik Eriksson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eriksson, F., Culp, W.D., Massey, R. et al. Tumor specific phage particles promote tumor regression in a mouse melanoma model. Cancer Immunol Immunother 56, 677–687 (2007). https://doi.org/10.1007/s00262-006-0227-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0227-6

Keywords

Navigation