Cancer Immunology, Immunotherapy

, Volume 56, Issue 2, pp 135–146 | Cite as

Analysis of naïve and memory CD4 and CD8 T cell populations in breast cancer patients receiving a HER2/neu peptide (E75) and GM-CSF vaccine

  • Matthew T. Hueman
  • Alexander Stojadinovic
  • Catherine E. Storrer
  • Zia A. Dehqanzada
  • Jennifer M. Gurney
  • Craig D. Shriver
  • Sathibalan Ponniah
  • George E. Peoples
Original Article

Abstract

We are conducting clinical trials of the E75 peptide as a vaccine in breast cancer (BrCa) patients. We assessed T cell subpopulations in BrCa patients before and after E75 vaccination and compared them to healthy controls. We obtained 17 samples of blood from ten healthy individuals and samples from 22 BrCa patients prior to vaccination. We also obtained pre- and post-vaccination samples of blood from seven BrCa patients who received the E75/GM-CSF vaccine. CD4, CD8, CD45RA, CD45RO, and CCR7 antibodies were used to analyze the CD4+ and CD8+ T cells by four-color flow cytometry. Compared to healthy individuals, BrCa patients have significantly more memory and less naïve T cells and more effector-memory CD8+ and less effector CD4+ T cells. Phenotypic differences in defined circulating CD4+ and CD8+ T cell subpopulations suggest remnants of an active immune response to tumor distinguished by a predominant memory T cell response and by untapped recruitment of naïve helper and cytotoxic T cells. E75 vaccination induced recruitment of both CD4+ and CD8+ naïve T cells while memory response remained stable. Additionally, vaccination induced global activation of all T cells, with specific enhancement of effector CD4+ T cells. E75 vaccination causes activation of both memory and naïve CD4+ and CD8+ T cells, while recruiting additional naïve CD4+ and CD8+ T cells to the overall immune response.

Keywords

HER2/neu E75-peptide vaccine Memory T cells Naïve T cells Immunophenotyping 

References

  1. 1.
    Breast Cancer Facts and Figures (2004) American Cancer Society Inc., GA, USAGoogle Scholar
  2. 2.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177PubMedCrossRefGoogle Scholar
  3. 3.
    Tandon AK, Clark GM, Chamness GC, Ullrich A, McGuire WL (1989) HER-2/neu oncogene protein and prognosis in breast cancer. J Clin Oncol 7:1120PubMedGoogle Scholar
  4. 4.
    Allred DC, Clark GM, Tandon AK, Molina R, Tormey DC, Osborne CK, Gilchrist KW, Mansour EG, Abeloff M, Eudey L, McGuire WL (1992) HER-2/neu in node-negative breast cancer: prognostic significance of overexpression influenced by the presence of in situ carcinoma. J Clin Oncol 10:599PubMedGoogle Scholar
  5. 5.
    Disis ML, Pupa SM, Gralow JR, Dittadi R, Menard S, Cheever MA (1997) High-titer HER-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol 15:3363PubMedGoogle Scholar
  6. 6.
    Disis ML, Cheever MA (1997) HER-2/neu protein: a target for antigen-specific immunotherapy of human cancer. Adv Cancer Res 71:343PubMedCrossRefGoogle Scholar
  7. 7.
    Rentzsch C, Kayser S, Stumm S, Watermann I, Walter S, Stevanovic S, Wallwiener D, Gückel B (2003) Evaluation of pre-existent immunity in patients with primary breast cancer: molecular and cellular assays to quantify antigen-specific T lymphocytes in peripheral blood mononuclear cells. Clin Cancer Res 9:4376PubMedGoogle Scholar
  8. 8.
    Woll MM, Fisher CM, Ryan GB, Gurney JM, Storrer CE, Ioannides CG, Shriver CD, Moul JW, McLeod DG, Ponniah S, Peoples GE (2004) Direct measurement of peptide-specific CD8+ T cells using HLA-A2:Ig dimer for monitoring the in vivo immune response to a HER2/neu vaccine in breast and prostate cancer patients. J Clin Immunol 24:449PubMedCrossRefGoogle Scholar
  9. 9.
    Ullenhag GJ, Frodin JE, Jeddi-Tehrani M, Strigård K, Eriksson E, Samanci A, Choudhury A, Nilsson B, Rossmann ED, Mosolits S, Mellstedt H (2004) Durable carcinoembryonic antigen (CEA)-specific humoral and cellular immune responses in colorectal carcinoma patients vaccinated with recombinant CEA and granulocyte/macrophage colony-stimulating factor. Clin Cancer Res 10:3273PubMedCrossRefGoogle Scholar
  10. 10.
    Slingluff CL Jr, Petroni GR, Yamshchikov GV, Barnd DL, Eastham S, Galavotti H, Patterson JW, Deacon DH, Hibbitts S, Teates D, Neese PY, Grosh WW, Chianese-Bullock KA, Woodson EMH, Wiernasz CJ, Merrill P, Gibson J, Ross M, Engelhard VH (2003) Clinical and immunologic results of a randomized phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J Clin Oncol 21:4016PubMedCrossRefGoogle Scholar
  11. 11.
    Soiffer R, Hodi FS, Haluska F, Jung K, Gillessen S, Singer S, Tanabe K, Duda R, Mentzer S, Jaklitsch M, Bueno R, Clift S, Hardy S, Neuberg D, Mulligan R, Webb I, Mihm M, Dranoff G (2003) Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 21:3343PubMedCrossRefGoogle Scholar
  12. 12.
    Weber J, Sondak VK, Scotland R, Phillip R, Wang F, Rubio V, Stuge TB, Groshen SG, Gee C, Jeffery GG, Sian S, Lee PP (2003) Granulocyte-macrophage-colony-stimulating factor added to a multipeptide vaccine for resected stage II melanoma. Cancer 97:186PubMedCrossRefGoogle Scholar
  13. 13.
    Monsurro V, Nagorsen D, Wang E, Provenzano M, Dudley ME, Rosenberg SA, Marincola FM (2002) Functional heterogeneity of vaccine-induced CD8(+) T cells. J Immunol 168:5933PubMedGoogle Scholar
  14. 14.
    Walker EB, Haley D, Miller W, Floyd K, Wisner KP, Sanjuan N, Maecker H, Romero P, Hu HM, Alvord WG, Smith JW, Fox BA, Urba WJ (2004) Gp100 (209-2M) peptide immunization of human lymphocyte antigen-A2+ stage I-III melanoma patients induces significant increase in antigen-specific effector and long-term memory CD8+ T cells. Clin Cancer Res 10:668PubMedCrossRefGoogle Scholar
  15. 15.
    Powell DJ Jr, Rosenberg SA (2004) Phenotypic and functional maturation of tumor antigen-reactive CD8+ T lymphocytes in patients undergoing multiple course peptide vaccination. J Immunother 27:36PubMedCrossRefGoogle Scholar
  16. 16.
    Chiong B, Wong R, Lee P, Delto J, Scotland R, Lau R, Weber J (2004) Characterization of long-term effector-memory T-cell responses in patients with resected high-risk melanoma receiving a melanoma peptide vaccine. J Immunother 27:368PubMedCrossRefGoogle Scholar
  17. 17.
    Jager E, Hohn H, Necker A, Forster R, Karbach J, Freitag K, Neukirch C, Castelli C, Salter RD, Knuth A, Maeurer MJ (2002) Peptide-specific CD8+ T-cell evolution in vivo: response to peptide vaccination with Melan-A/MART-1. Int J Cancer 98:376PubMedCrossRefGoogle Scholar
  18. 18.
    Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708PubMedCrossRefGoogle Scholar
  19. 19.
    Wills MR, Okecha G, Weekes MP, Gandhi MK, Sissons PJG, Carmichael AJ (2002) Identification of naïve or antigen–experienced human CD8+ T cells by expression of costimulation and chemokine receptors: analysis of human cytomegalovirus-specific CD8+ T cell response. J Immunol 168:5455PubMedGoogle Scholar
  20. 20.
    Tomiyama H, Matsuda T, Takiguchi M (2002) Differentiation of human CD8 T cells from a memory to memory/effector phenotype. J Immunol 168:5538PubMedGoogle Scholar
  21. 21.
    van Lier RA, Ten Berge IJ, Gamadia LE (2003) Human CD8+ T cell differentiation in response to viruses. Nat Rev Immunol 3:1CrossRefGoogle Scholar
  22. 22.
    Ravkov EV, Myrick CM, Altman JD (2003) Immediate early effector functions of virus-specific CD8+CCR7+ memory cells in humans defined by HLA and CC chemokine ligand 19 tetramers. J Immunol 170:2461PubMedGoogle Scholar
  23. 23.
    Peoples GE, Gurney JM, Hueman MT, Woll MM, Ryan GB, Storrer CE, Fisher C, Shriver CD, Ioannides CG, Ponniah S (2005) Clinical trial results of a HER2/neu (E75) vaccine to prevent recurrence in high-risk breast cancer patients. J Clin Oncol 23:7536PubMedCrossRefGoogle Scholar
  24. 24.
    Hueman MT, Degqanzada ZA, Novak TE, Gurney JM, Woll MM, Ryan GB, Storrer CE, Fisher C, McLeod DG, Ioannides CG, Ponniah S, Peoples GE (2005) Phase I clinical trial of a HER-2/neu peptide (E75) vaccine for the prevention of prostate-specific antigen recurrence in high-risk prostate cancer patients. Clin Cancer Res 11:7470PubMedCrossRefGoogle Scholar
  25. 25.
    Peoples GE, Goedegebuure PS, Smith R, Linehan DC, Yoshino I, Eberlein TJ (1995) Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. Proc Natl Acad Sci USA 92:432PubMedCrossRefGoogle Scholar
  26. 26.
    Knutson KL, Schiffman K, Disis ML (2001) Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J Clin Invest 107:477PubMedCrossRefGoogle Scholar
  27. 27.
    Murray JL, Gillogly ME, Przepiorka D, Brewer H, Ibrahim NK, Booser DJ, Hortobagyi GN, Kudelka AP, Grabstein KH, Cheever MA, Ioannides CG (2002) Toxicity, immunogenicity, and induction of E75-specific tumor-lytic CTLs by HER-2 peptide E75 (369–377) combined with granulocyte macrophage colony-stimulating factor in HLA-A2+ patients with metastatic breast and ovarian cancer. Clin Cancer Res 8:3407PubMedGoogle Scholar
  28. 28.
    McNeel DG, Knutson KL, Schiffman K, Davis DR, Caron D, Disis ML (2003) Pilot study of an HLA-A2 peptide vaccine using flt3 ligand as a systemic vaccine adjuvant. J Clin Immunol 23:62PubMedCrossRefGoogle Scholar
  29. 29.
    Woll MM, Hueman MT, Ryan GB, Ioannides CG, Henderson CG, Sesterhan IA, Shrivasta S, McLeod DG, Moul JW, Peoples GE (2004) Preclinical testing of a peptide-based, HER2/neu vaccine for prostate cancer. Int J Oncol 25:1769PubMedGoogle Scholar
  30. 30.
    Ioannides CG, Fisk B, Fan D, Biddison WE, Wharton JT, O’Brian CA (1993) Cytotoxic T-cells isolated from ovarian malignant ascites recognize a peptide derived from the HER-2/neu proto-oncogene. Cell Immunol 151:225PubMedCrossRefGoogle Scholar
  31. 31.
    Peiper M, Goedegebuure PS, Izbicki JR, Eberlein TJ (1999) Pancreatic cancer associated ascites-derived CTL recognize a nine-amino-acid peptide GP2 derived from HER2/neu. Anticancer Res 19:2471PubMedGoogle Scholar
  32. 32.
    Yoshino I, Goedegebuure PS, Peoples GE, Parikh AS, DiMaio JM, Lyerly HK, Gazdar AF, Eberlein TJ (1994) HER2/neu-derived peptides are shared antigens among human non-small cell lung cancer and ovarian cancer. Cancer Res 54:3387PubMedGoogle Scholar
  33. 33.
    Speiser DE, Rimoldi D, Batard P, Lienard D, Lejeune F, Cerottini JC, Romero P (2003) Disease-driven T cell activation predicts immune responses to vaccination against melanoma. Cancer Immun 3:12PubMedGoogle Scholar
  34. 34.
    Disis ML, Cheever MA (1998) HER-2/neu oncogenic protein:issues in vaccine development. Crit Rev Immunol 18:37PubMedGoogle Scholar
  35. 35.
    Nieto Y, Shpall EJ, McNiece IK, Nawaz S, Beaudet J, Rosinski S, Pellom J, Slat-Vasquez V, McSweeney PA, Bearman SI, Murphy J, Jones RB (2004) Prognostic analysis of early lymphocyte recovery in patients with advanced breast cancer receiving high-dose chemotherapy with an autologous hematopoietic progenitor cell transplant. Clin Cancer Res 10:5076PubMedCrossRefGoogle Scholar
  36. 36.
    Sportes C, McCarthy NJ, Hakim F, Steinberg SM, Liewehr DJ, Weng D, Kummar S, Gea-Banacloche J, Chow CK, Dean RM, Castro KM, Marchigiani D, Bishop MR, Fowler DH, Gress RE (2005) Establishing a platform for immunotherapy: clinical outcome and study of immune reconstitution after high-dose chemotherapy with progenitor cell support in breast cancer patients. Biol Blood Marrow Transplant 11:472PubMedCrossRefGoogle Scholar
  37. 37.
    Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA, Davis MM, Engleman EG (2001) Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA 98:8809PubMedCrossRefGoogle Scholar
  38. 38.
    Belli F, Testori A, Rivoltini L, Maio M, Andreola G, Sertoli MR, Gallino G, Piris A, Cattelan A, Lazzari I, Carrabba M, Scita G, Santantonio C, Pila L, Tragni G, Lombardo C, Arienti F, Marchianò A, Queirolo P, Bertolini F, Cova A, Lamaj E, Ascani L, Camerini R, Corsi M, Cascinelli N, Lewis JJ, Srivastava P, Parmiani G (2002) Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol 20:4169PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Matthew T. Hueman
    • 1
    • 2
  • Alexander Stojadinovic
    • 1
  • Catherine E. Storrer
    • 2
  • Zia A. Dehqanzada
    • 1
    • 2
  • Jennifer M. Gurney
    • 1
    • 2
  • Craig D. Shriver
    • 1
  • Sathibalan Ponniah
    • 2
  • George E. Peoples
    • 1
    • 2
  1. 1.Clinical Breast Care Project, Department of SurgeryWalter Reed Army Medical CenterWashingtonUSA
  2. 2.Clinical Breast Care Project, Immunology and Research CenterNational Naval Medical Center, Henry M. Jackson FoundationBethesdaUSA

Personalised recommendations