Skip to main content

Advertisement

Log in

Retinoic acid elicits cytostatic, cytotoxic and immunomodulatory effects on uveal melanoma cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The current therapy of uveal melanoma (UM) metastases remains inefficient, which warrants the development of new treatment modalities. For the first time we investigated the effects of retinoic acid (RA) on a panel of UM cell lines and found that RA induces morphological changes compatible with differentiation, suppresses proliferation and causes apoptosis in these cells. RA treatment resulted in an increase of p21, p27 and p53 protein levels and G1 arrest in UM cells, which correlated with significant down-modulation of surface Her2/neu proto-oncogene expression. In addition, RA-treated UM cells exhibited increased sensitivity to both MHC class I-restricted killing by cytotoxic T lymphocytes and NK cell-mediated lysis that were accompanied by more efficient conjugate formation between UM cells and killer lymphocytes. Taken together, our results implicate UM as a new target for treatment with retinoids and suggest that retinoids and T- or NK-cell based immunotherapy can have mutually enhancing effects in UM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Albert DM, Niffenegger AS, Willson JK (1992) Treatment of metastatic uveal melanoma: review and recommendations. Surv Ophthalmol 36(6):429–438

    Article  PubMed  CAS  Google Scholar 

  2. Alexander CL, Edward M, MacKie RM (1999) The role of human melanoma cell ICAM-1 expression on lymphokine activated killer cell-mediated lysis, and the effect of retinoic acid. Br J Cancer 80(10):1494–1500

    Article  PubMed  CAS  Google Scholar 

  3. Altucci L, Gronemeyer H (2001) The promise of retinoids to fight against cancer. Nat Rev Cancer 1(3):181–193

    Article  PubMed  CAS  Google Scholar 

  4. Bacus SS, Kiguchi K, Chin D (1990) Differentiation of cultured human breast cancer cells (AU-565 and MCF-7) associated with loss of cell surface HER-2/neu antigen. Mol Carcinog 3(6):350–362

    PubMed  CAS  Google Scholar 

  5. Barber DF, Faure M, Long EO (2004) LFA-1 contributes an early signal for NK cell cytotoxicity. J Immunol 173(6):3653–3659

    PubMed  CAS  Google Scholar 

  6. Baselga J (2000) Monoclonal antibodies directed at growth factor receptors. Ann Oncol 11(Suppl 3):187–190

    Article  PubMed  Google Scholar 

  7. Bromley SK, Burack WR, Johnson KG, et al (2001) The immunological synapse. Annu Rev Immunol 19:375–396

    Article  PubMed  CAS  Google Scholar 

  8. Chun KH, Pfahl M, Lotan R (2005) Induction of apoptosis by the synthetic retinoid MX3350-1 through extrinsic and intrinsic pathways in head and neck squamous carcinoma cells. Oncogene 24(22):3669–3677

    Article  PubMed  CAS  Google Scholar 

  9. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    Article  PubMed  CAS  Google Scholar 

  10. Eccles SA, Barnett SC, Alexander P (1985) Inhibition of growth and spontaneous metastasis of syngeneic transplantable tumors by an aromatic retinoic acid analogue. 1. Relationship between tumour immunogenicity and responsiveness. Cancer Immunol Immunother 19(2):109–114

    PubMed  CAS  Google Scholar 

  11. Eskelin S, Pyrhonen S, Summanen P et al (1999) Screening for metastatic malignant melanoma of the uvea revisited. Cancer 85(5):1151–1159

    Article  PubMed  CAS  Google Scholar 

  12. Hallermalm K, De Geer A, Kiessling R et al (2004) Autocrine secretion of Fas ligand shields tumor cells from Fas-mediated killing by cytotoxic lymphocytes. Cancer Res 64(18):6775–6782

    Article  PubMed  CAS  Google Scholar 

  13. Jimenez-Lara AM, Clarke N, Altucci L et al (2004) Retinoic-acid-induced apoptosis in leukemia cells. Trends Mol Med 10(10):508–515

    Article  PubMed  CAS  Google Scholar 

  14. Kambhampati S, Verma A, Li Y et al (2004) Signalling pathways activated by all-trans-retinoic acid in acute promyelocytic leukemia cells. Leuk Lymphoma 45(11):2175–2185

    Article  PubMed  CAS  Google Scholar 

  15. Kastner P, Grondona JM, Mark M et al (1994) Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell 78(6):987–1003

    Article  PubMed  CAS  Google Scholar 

  16. Kiessling R, Wei WZ, Herrmann F et al (2002) Cellular immunity to the Her-2/neu protooncogene. Adv Cancer Res 85:101–144

    Article  PubMed  CAS  Google Scholar 

  17. Levitsky V, de Campos-Lima PO, Frisan T et al (1998) The clonal composition of a peptide-specific oligoclonal CTL repertoire selected in response to persistent EBV infection is stable over time. J Immunol 161(2):594–601

    PubMed  CAS  Google Scholar 

  18. Marill J, Idres N, Capron CC et al (2003) Retinoic acid metabolism and mechanism of action: a review. Curr Drug Metab 4(1):1–10

    Article  PubMed  CAS  Google Scholar 

  19. Martin SJ, Reutelingsperger CP, McGahon AJ et al (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182(5):1545–1556

    Article  PubMed  CAS  Google Scholar 

  20. Morriss-Kay GM, Sokolova N (1996) Embryonic development and pattern formation. FASEB J 10(9):961–968

    PubMed  CAS  Google Scholar 

  21. Naganuma H, Kiessling R, Patarroyo M et al (1991) Increased susceptibility of IFN-gamma-treated neuroblastoma cells to lysis by lymphokine-activated killer cells: participation of ICAM-1 induction on target cells. Int J Cancer 47(4):527–532

    PubMed  CAS  Google Scholar 

  22. Nagy L, Thomazy VA, Heyman RA et al (1998) Retinoid-induced apoptosis in normal and neoplastic tissues. Cell Death Differ 5(1):11–19

    Article  PubMed  CAS  Google Scholar 

  23. Natarajan K, Dimasi N, Wang J et al (2002) Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination. Annu Rev Immunol 20:853–885

    Article  PubMed  CAS  Google Scholar 

  24. Offterdinger M, Schneider SM, Huber H et al (1998) Retinoids control the expression of c-erbB receptors in breast cancer cells. Biochem Biophys Res Commun 251(3):907–913

    Article  PubMed  CAS  Google Scholar 

  25. Pahlman S, Ruusala AI, Abrahamsson L, et al (1984) Retinoic acid-induced differentiation of cultured human neuroblastoma cells: a comparison with phorbolester-induced differentiation. Cell Differ 14(2):135–144

    Article  PubMed  CAS  Google Scholar 

  26. Poggi A, Venturino C, Catellani S et al (2004) Vdelta1 T lymphocytes from B-CLL patients recognize ULBP3 expressed on leukemic B cells and up-regulated by trans-retinoic acid. Cancer Res 64(24):9172–9179

    Article  PubMed  CAS  Google Scholar 

  27. Reynolds CP (2000) Differentiating agents in pediatric malignancies: retinoids in neuroblastoma. Curr Oncol Rep 2(6):511–518

    PubMed  CAS  Google Scholar 

  28. Sako T, Nakayama Y, Minagawa N et al (2005) 4-[3,5-Bis(trimethylsilyl)benzamido] benzoic acid (TAC-101) induces apoptosis in colon cancer partially through the induction of Fas expression. In Vivo 19(1):125–132

    PubMed  CAS  Google Scholar 

  29. Schneider SM, Offterdinger M, Huber H et al (1999) Involvement of nuclear steroid/thyroid/retinoid receptors and of protein kinases in the regulation of growth and of c-erbB and retinoic acid receptor expression in MCF-7 breast cancer cells. Breast Cancer Res Treat 58(2):171–181

    Article  PubMed  CAS  Google Scholar 

  30. Sun SY, Yue P, Hong WK et al (2000) Induction of Fas expression and augmentation of Fas/Fas ligand-mediated apoptosis by the synthetic retinoid CD437 in human lung cancer cells. Cancer Res 60(22):6537–6543

    PubMed  CAS  Google Scholar 

  31. Torsteinsdottir S, Masucci MG, Ehlin-Henriksson B, et al (1986) Differentiation-dependent sensitivity of human B-cell-derived lines to major histocompatibility complex-restricted T-cell cytotoxicity. Proc Natl Acad Sci USA 83(15):5620–5624

    Article  PubMed  CAS  Google Scholar 

  32. Toulouse A, Loubeau M, Morin J et al (2000) RAR beta involvement in enhancement of lung tumor cell immunogenicity revealed by array analysis. FASEB J 14(9):1224–1232

    PubMed  CAS  Google Scholar 

  33. Vertuani S, De Geer A, Levitsky V et al (2003) Retinoids act as multistep modulators of the major histocompatibility class I presentation pathway and sensitize neuroblastomas to cytotoxic lymphocytes. Cancer Res 63(22):8006–8013

    PubMed  CAS  Google Scholar 

  34. Wang Z, Cao Y, D’Urso CM et al (1992) Differential susceptibility of cultured human melanoma cell lines to enhancement by retinoic acid of intercellular adhesion molecule 1 expression. Cancer Res 52(17):4766–4772

    PubMed  CAS  Google Scholar 

  35. Wang MX, Shields JA, Donoso LA (1993) Subclinical metastasis of uveal melanoma. Int Ophthalmol Clin 33(3):119–127

    Article  PubMed  CAS  Google Scholar 

  36. Zhang H, Rosdahl I (2004) Expression profiles of p53, p21, bax and bcl-2 proteins in all-trans-retinoic acid treated primary and metastatic melanoma cells. Int J Oncol 25(2):303–308

    PubMed  CAS  Google Scholar 

  37. Zierhut M, Streilein JW, Schreiber H, et al (1999) Immunology of ocular tumours. Immunol Today 20(11):482–485

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Swedish Cancer Foundation, Swedish Research Council, the Cancer Society in Stockholm and King Gustav the Fifth Jubilee Fund. We would like to thank Mikael Hanson for his help in the preparation of the manuscript and Dr. Ashley Miller for the critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Levitskaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vertuani, S., Dubrovska, E., Levitsky, V. et al. Retinoic acid elicits cytostatic, cytotoxic and immunomodulatory effects on uveal melanoma cells. Cancer Immunol Immunother 56, 193–204 (2007). https://doi.org/10.1007/s00262-006-0185-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0185-z

Keywords

Navigation