Skip to main content
Log in

Melanocyte differentiation antigen RAB38/NY-MEL-1 induces frequent antibody responses exclusively in melanoma patients

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Expression pattern and immunogenicity are critical issues that define tumor antigens as diagnostic markers and potential targets for immunotherapy. The development of SEREX (serological analysis of recombinant expression libraries) has provided substantial progress in the identification of tumor antigens eliciting both cellular and humoral immune responses in cancer patients. By SEREX, we have previously identified RAB38/NY-MEL-1 as a melanocyte differentiation antigen that is highly expressed in normal melanocytes and melanoma tissues but not in other normal tissues or cancer types. In this study, we further demonstrate that RAB38/NY-MEL-1 is strongly immunogenic, leading to spontaneous antibody responses in a significant proportion of melanoma patients. The immune response occurs solely in malignant melanoma patients and was not detected in patients with other diseases, such as vitiligo, affecting melanocytes. Fine analysis of the spontaneous anti-RAB38/NY-MEL-1 antibody response reveals a polyclonal B cell recognition targeting various epitopes, although a dominant immunogenic region was preferentially recognized. Interestingly, our data indicate that this recognition is not rigid in the course of a patient’s response, as the dominant epitope changes during the disease evolution. Implications for the understanding of spontaneous humoral immune responses are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  2. Chen YT, Scanlan MJ, Sahin U, Tureci O, Gure AO, Tsang S, Williamson B, Stockert E, Pfreundschuh M, Old LJ (1997) A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 94:1914–1918

    Article  PubMed  CAS  Google Scholar 

  3. Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148

    Article  PubMed  CAS  Google Scholar 

  4. Fensterle J, Becker JC, Potapenko T, Heimbach V, Vetter CS, Brocker EB, Rapp UR (2004) B-Raf specific antibody responses in melanoma patients. BMC Cancer 4:62

    Article  PubMed  CAS  Google Scholar 

  5. Fishman P, Merimski O, Baharav E, Shoenfeld Y (1997) Autoantibodies to tyrosinase: the bridge between melanoma and vitiligo. Cancer 79:1461–1464

    Article  PubMed  CAS  Google Scholar 

  6. Gnjatic S, Atanackovic D, Jager E, Matsuo M, Selvakumar A, Altorki NK, Maki RG, Dupont B, Ritter G, Chen YT, et al (2003) Survey of naturally occurring CD4+ T cell responses against NY-ESO-1 in cancer patients: correlation with antibody responses. Proc Natl Acad Sci USA 100:8862–8867

    Article  PubMed  CAS  Google Scholar 

  7. Huang SK, Okamoto T, Morton DL, Hoon DS (1998) Antibody responses to melanoma/melanocyte autoantigens in melanoma patients. J Invest Dermatol 111:662–667

    Article  PubMed  CAS  Google Scholar 

  8. Iwamoto S, Burrows RC, Grossniklaus HE, Orcutt J, Kalina RE, Boehm M, Bothwell MA, Schmidt R (2002) Immunophenotype of conjunctival melanomas: comparisons with uveal and cutaneous melanomas. Arch Ophthalmol 120:1625–1629

    PubMed  Google Scholar 

  9. Jager D, Stockert E, Jager E, Gure AO, Scanlan MJ, Knuth A, Old LJ, Chen YT (2000) Serological cloning of a melanocyte rab guanosine 5′-triphosphate-binding protein and a chromosome condensation protein from a melanoma complementary DNA library. Cancer Res 60:3584–3591

    PubMed  CAS  Google Scholar 

  10. Jager D, Taverna C, Zippelius A, Knuth A (2004) Identification of tumor antigens as potential target antigens for immunotherapy by serological expression cloning. Cancer Immunol Immunother 53:144–147

    Article  PubMed  CAS  Google Scholar 

  11. Jager E, Gnjatic S, Nagata Y, Stockert E, Jager D, Karbach J, Neumann A, Rieckenberg J, Chen YT, Ritter G, et al (2000) Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc Natl Acad Sci USA 97:12198–12203

    Article  PubMed  CAS  Google Scholar 

  12. Jager E, Ringhoffer M, Arand M, Karbach J, Jager D, Ilsemann C, Hagedorn M, Oesch F, Knuth A (1996) Cytolytic T cell reactivity against melanoma-associated differentiation antigens in peripheral blood of melanoma patients and healthy individuals. Melanoma Res 6:419–425

    Article  PubMed  CAS  Google Scholar 

  13. Kemp EH, Waterman EA, Weetman AP (2001) Immunological pathomechanisms in vitiligo. Expert Rev Mol Med 2001:1–22

    Article  PubMed  CAS  Google Scholar 

  14. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  15. Lins L, Thomas A, Brasseur R (2003) Analysis of accessible surface of residues in proteins. Protein Sci 12:1406–1417

    Article  PubMed  CAS  Google Scholar 

  16. Loftus SK, Larson DM, Baxter LL, Antonellis A, Chen Y, Wu X, Jiang Y, Bittner M, Hammer JA III, Pavan WJ (2002) Mutation of melanosome protein RAB38 in chocolate mice. Proc Natl Acad Sci USA 99:4471–4476

    Article  PubMed  CAS  Google Scholar 

  17. Merimsky O, Baharav E, Shoenfeld Y, Chaitchik S, Tsigelman R, Cohen-Aloro D, Fishman P (1996) Anti-tyrosinase antibodies in malignant melanoma. Cancer Immunol Immunother 42:297–302

    Article  PubMed  CAS  Google Scholar 

  18. Osanai K, Iguchi M, Takahashi K, Nambu Y, Sakuma T, Toga H, Ohya N, Shimizu H, Fisher JH, Voelker DR (2001) Expression and localization of a novel Rab small G protein (Rab38) in the rat lung. Am J Pathol 158:1665–1675

    PubMed  CAS  Google Scholar 

  19. Osanai K, Takahashi K, Nakamura K, Takahashi M, Ishigaki M, Sakuma T, Toga H, Suzuki T, Voelker DR (2005) Expression and characterization of Rab38, a new member of the Rab small G protein family. Biol Chem 386:143–153

    Article  PubMed  CAS  Google Scholar 

  20. Parker JM, Guo D, Hodges RS (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25:5425–5432

    Article  PubMed  CAS  Google Scholar 

  21. Pereira-Leal JB, Seabra MC (2001) Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 313:889–901

    Article  PubMed  CAS  Google Scholar 

  22. Pupa SM, Menard S, Andreola S, Colnaghi MI (1993) Antibody response against the c-erbB-2 oncoprotein in breast carcinoma patients. Cancer Res 53:5864–5866

    PubMed  CAS  Google Scholar 

  23. Sahin U, Tureci O, Schmitt H, Cochlovius B, Johannes T, Schmits R, Stenner F, Luo G, Schobert I, Pfreundschuh M (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 92:11810–11813

    Article  PubMed  CAS  Google Scholar 

  24. Scanlan MJ, Simpson AJ, Old LJ (2004) The cancer/testis genes: review, standardization, and commentary. Cancer Immun 4:1

    PubMed  Google Scholar 

  25. Schauer U, Stemberg F, Rieger CH, Buttner W, Borte M, Schubert S, Mollers H, Riedel F, Herz U, Renz H, Herzog W (2003) Levels of antibodies specific to tetanus toxoid, Haemophilus influenzae type b, and pneumococcal capsular polysaccharide in healthy children and adults. Clin Diagn Lab Immunol 10:202–207

    Article  PubMed  CAS  Google Scholar 

  26. Stockert E, Jager E, Chen YT, Scanlan MJ, Gout I, Karbach J, Arand M, Knuth A, Old LJ (1998) A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J Exp Med 187:1349–1354

    Article  PubMed  CAS  Google Scholar 

  27. Takahashi M, Chen W, Byrd DR, Disis ML, Huseby ES, Qin H, McCahill L, Nelson H, Shimada H, Okuno K, et al (1995) Antibody to ras proteins in patients with colon cancer. Clin Cancer Res 1:1071–1077

    PubMed  CAS  Google Scholar 

  28. Van den Eynde BJ, van der Bruggen P (1997) T cell defined tumor antigens. Curr Opin Immunol 9:684–693

    Article  PubMed  Google Scholar 

  29. Winter SF, Minna JD, Johnson BE, Takahashi T, Gazdar AF, Carbone DP (1992) Development of antibodies against p53 in lung cancer patients appears to be dependent on the type of p53 mutation. Cancer Res 52:4168–4174

    PubMed  CAS  Google Scholar 

  30. Yamamoto A, Shimizu E, Ogura T, Sone S (1996) Detection of auto-antibodies against L-myc oncogene products in sera from lung cancer patients. Int J Cancer 69:283–289

    Article  PubMed  CAS  Google Scholar 

  31. Zeng G, Aldridge ME, Wang Y, Pantuck AJ, Wang AY, Liu YX, Han Y, Yuan YH, Robbins PF, Dubinett SM, et al (2005) Dominant B cell epitope from NY-ESO-1 recognized by sera from a wide spectrum of cancer patients: implications as a potential biomarker. Int J Cancer 114:268–273

    Article  PubMed  CAS  Google Scholar 

  32. Zippelius A, Batard P, Rubio-Godoy V, Bioley G, Lienard D, Lejeune F, Rimoldi D, Guillaume P, Meidenbauer N, Mackensen A, et al (2004) Effector function of human tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance. Cancer Res 64:2865–2873

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Swiss National Science Foundation special program, and a grant from the Cancer Research Institute/Ludwig Institute for Cancer Research Cancer Vaccine Collaborative, the Terry-Fox, Hanne-Liebermann and Claudia-von-Schilling Foundation, and the UBS Wealth Management. A.Z., A.G., and S.W. were supported in part by the Emmy-Noether Program (Zi685-2/3) of the Deutsche Forschungsgemeinschaft. The excellent technical assistance of Claudia Frei and Julia Karbach is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alfred Zippelius or Dirk Jaeger.

Additional information

Alfred Zippelius and Asma Gati contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zippelius, A., Gati, A., Bartnick, T. et al. Melanocyte differentiation antigen RAB38/NY-MEL-1 induces frequent antibody responses exclusively in melanoma patients. Cancer Immunol Immunother 56, 249–258 (2007). https://doi.org/10.1007/s00262-006-0177-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0177-z

Keywords

Navigation