Skip to main content


Log in

Soluble MICB in malignant diseases: analysis of diagnostic significance and correlation with soluble MICA

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript


Expression of ligands of the immunoreceptor NKG2D such as MICA and MICB has been proposed to play an important role in the immunosurveillance of tumors. Proteolytic shedding of NKG2D ligands from cancer cells therefore constitutes an immune escape mechanism impairing anti-tumor reactivity by NKG2D-bearing cytotoxic lymphocytes. Serum levels of sMICA have been shown to be of diagnostic significance in malignant diseases of various origins. Here, we investigated the potential of soluble MICB, the sister molecule of MICA, as a marker in cancer and its correlation with soluble MICA. Analysis of MICB in sera of 512 individuals revealed slightly higher MICB levels in patients with various malignancies (N = 296; 95th percentile 216 pg/ml; P = 0.069) than in healthy individuals (N = 62; 95th percentile 51 pg/ml). Patients with benign diseases (N = 154; 95th percentile 198 pg/ml) exhibited intermediate MICB levels. In cancer patients, elevated MICB levels correlated significantly with cancer stage and metastasis (P = 0.007 and 0.007, respectively). Between MICB and MICA levels, only a weak correlation was found (r = 0.24). Combination of both markers resulted only in a slightly higher diagnostic power in the high specificity range. The reduction of MICA and MICB surface expression on cells by shedding and the effects of sMICA and sMICB in serum on host lymphocyte NKG2D expression might play a role in late stages of tumor progression by overcoming the confining effect of NK cells and CD8 T cells. While MICB levels are not suited for the diagnosis of cancer in early stages, they may provide additional information for the staging of cancer disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others


  1. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729

    Article  PubMed  CAS  Google Scholar 

  2. Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T (2001) Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2:255–260

    Article  PubMed  CAS  Google Scholar 

  3. Gasser S, Orsulic S, Brown EJ, Raulet DH (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436:1186–1190

    Article  PubMed  CAS  Google Scholar 

  4. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T (1999) Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci USA 96:6879–6884

    Article  PubMed  CAS  Google Scholar 

  5. Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG, Steinle A (2003) Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102:1389–1396

    Article  PubMed  CAS  Google Scholar 

  6. Diefenbach A, Jensen ER, Jamieson AM, Raulet DH (2001) Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413:165–171

    Article  PubMed  CAS  Google Scholar 

  7. Cerwenka A, Baron JL, Lanier LL (2001) Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci USA 98:11521–11526

    Article  PubMed  CAS  Google Scholar 

  8. Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274

    Article  PubMed  CAS  Google Scholar 

  9. Pende D, Rivera P, Marcenaro S, Chang CC, Biassoni R, Conte R, Kubin M, Cosman D, Ferrone S, Moretta L, Moretta A (2002) Major histocompatibility complex class I-related chain A and UL16-binding protein expression on tumor cell lines of different histotypes: analysis of tumor susceptibility to NKG2D-dependent natural killer cell cytotoxicity. Cancer Res 62:6178–6186

    PubMed  CAS  Google Scholar 

  10. Castriconi R, Cantoni C, Della Chiesa M, Vitale M, Marcenaro E, Conte R, Biassoni R, Bottino C, Moretta L, Moretta A (2003) Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA 100:4120–4125

    Article  PubMed  CAS  Google Scholar 

  11. Friese MA, Wischhusen J, Wick W, Weiler M, Eisele G, Steinle A, Weller M (2004) RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 64:7596–7603

    Article  PubMed  CAS  Google Scholar 

  12. Kriegeskorte AK, Gebhardt FE, Porcellini S, Schiemann M, Stemberger C, Franz TJ, Huster KM, Carayannopoulos LN, Yokoyama WM, Colonna M, Siccardi AG, Bauer S, Busch DH (2005) NKG2D-independent suppression of T cell proliferation by H60 and MICA. Proc Natl Acad Sci USA 102:11805–11810

    Article  PubMed  CAS  Google Scholar 

  13. Salih HR, Rammensee HG, Steinle A (2002) Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J Immunol 169:4098–4102

    PubMed  CAS  Google Scholar 

  14. Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738

    Article  PubMed  CAS  Google Scholar 

  15. Yokoyama WM (2002) Immunology: catch us if you can. Nature 419:679–680

    Article  PubMed  CAS  Google Scholar 

  16. Holdenrieder S, Stieber P, Peterfi A, Nagel D, Steinle AL, Salih HR (2006) Soluble MICA in malignant diseases. Int J Cancer 118:684–687

    Article  PubMed  CAS  Google Scholar 

  17. Doubrovina ES, Doubrovin MM, Vider E, Sisson RB, O’Reilly RJ, Dupont B, Vyas YM (2003) Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J Immunol 171:6891–6899

    PubMed  CAS  Google Scholar 

  18. Wu JD, Higgins LM, Steinle A, Cosman D, Haugk K, Plymate SR (2004) Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J Clin Invest 114:560–568

    PubMed  CAS  Google Scholar 

  19. Raffaghello L, Prigione I, Airoldi I, Camoriano M, Levreri I, Gambini C, Pende D, Steinle A, Ferrone S, Pistoia V (2004) Downregulation and/or release of NKG2D ligands as immune evasion strategy of human neuroblastoma. Neoplasia 6:558–568

    Article  PubMed  CAS  Google Scholar 

  20. Welte SA, Sinzger C, Lutz SZ, Singh-Jasuja H, Sampaio KL, Eknigk U, Rammensee HG, Steinle A (2003) Selective intracellular retention of virally induced NKG2D ligands by the human cytomegalovirus UL16 glycoprotein. Eur J Immunol 33:194–203

    Article  PubMed  CAS  Google Scholar 

  21. Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T (1996) Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA 93:12445–12450

    Article  PubMed  CAS  Google Scholar 

  22. Schalhorn A, Fuerst H, Stieber P (2001) Tumor markers in lung cancer. J Lab Med 25:353–361

    CAS  Google Scholar 

  23. Stieber P, Hasholzner U, Bodenmuller H, Nagel D, Sunder-Plassmann L, Dienemann H, Meier W, Fateh-Moghadam A (1993) CYFRA 21-1. A new marker in lung cancer. Cancer 72:707–713

    Article  PubMed  CAS  Google Scholar 

  24. Stieber P, Molina R, Chan DW, Fritsche HA, Beyrau R, Bonfrer JM, Filella X, Gornet TG, Hoff T, Jager W, van Kamp GJ, Nagel D, Peisker K, Sokoll LJ, Troalen F, Untch M, Domke I (2003) Clinical evaluation of the Elecsys CA 15-3 test in breast cancer patients. Clin Lab 49:15–24

    PubMed  CAS  Google Scholar 

  25. Molina R, Filella X, Auge JM (2004) ProGRP: a new biomarker for small cell lung cancer. Clin Biochem 37:505–511

    Article  PubMed  CAS  Google Scholar 

  26. Stieber P, Yamaguchi K (2002) ProGRP enables diagnosis of small-cell lung cancer. In: Diamandis EP, Frische HA, Lilja H, Chan DW, Schwartz MK (eds) Tumor markers; physiology, pathobiology, technology, and clinical applications, 1st edn. AACC, Washington, pp. 517–521

    Google Scholar 

  27. Molina R, Filella X, Auge JM, Fuentes R, Bover I, Rifa J, Moreno V, Canals E, Vinolas N, Marquez A, Barreiro E, Borras J, Viladiu P (2003) Tumor markers (CEA, CA 125, CYFRA 21-1, SCC and NSE) in patients with non-small cell lung cancer as an aid in histological diagnosis and prognosis. Comparison with the main clinical and pathological prognostic factors. Tumour Biol 24:209–218

    Article  PubMed  CAS  Google Scholar 

  28. Onda H, Ohkubo S, Shintani Y, Ogi K, Kikuchi K, Tanaka H, Yamamoto K, Tsuji I, Ishibashi Y, Yamada T, Kitada C, Suzuki N, Sawada H, Nishimura O, Fujino M (2001) A novel secreted tumor antigen with a glycosylphosphatidylinositol-anchored structure ubiquitously expressed in human cancers. Biochem Biophys Res Commun 285:235–243

    Article  PubMed  CAS  Google Scholar 

Download references


This work was supported by grants from the Deutsche Krebshilfe (10-1921-Sa, 10-2004-Sa2).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Stefan Holdenrieder.

Additional information

Alexander Steinle and Helmut R. Salih contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holdenrieder, S., Stieber, P., Peterfi, A. et al. Soluble MICB in malignant diseases: analysis of diagnostic significance and correlation with soluble MICA. Cancer Immunol Immunother 55, 1584–1589 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: