Skip to main content

Advertisement

Log in

Complement decay accelerating factor (DAF)/CD55 in cancer

  • Symposium Paper
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The complement system is a powerful innate mechanism involved in protection of the host against pathogens. It also has a role in the clearance of apoptotic cells and has been implicated in a range of pathologies including autoimmunity and graft rejection. The control of complement is mediated through the complement regulatory proteins (CRPs). These are present on most cells and protect normal cells from complement-mediated attack during innate activation. However, in a range of pathologies and cancer, these molecules are up or down regulated, sometimes secreted and even lost. We will review the expression of CRPs in cancer, focussing on CD55 and highlight other roles of the CRPs and their involvement in leukocyte function. We will also provide some data providing a potential mechanism by which soluble CD55 can inhibit T-cell function and discuss some of the implications of this data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Armitage NC, Perkins AC, Pimm MV, Farrands PA, Baldwin RW, Hardcastle JD (1984) The localization of an anti-tumour monoclonal antibody (791T/36) in gastrointestinal tumours. Br J Surg 71:407–12

    Article  PubMed  CAS  Google Scholar 

  2. Armitage NC, Perkins AC, Pimm MV, Wastie ML, Baldwin RW, Hardcastle JD (1985) Imaging of primary and metastatic colorectal cancer using an 111In- labelled antitumour monoclonal antibody (791T/36). Nucl Med Commun 6:623–631

    Article  PubMed  CAS  Google Scholar 

  3. Bjorge L, Hakulinen J, Vintermyr OK, Jarva H, Jensen TS, Iversen OE, Meri S, (2005). Ascitic complement system in ovarian cancer. Br J Cancer 92:895–905

    Article  PubMed  CAS  Google Scholar 

  4. Bjorge L, Hakulinen J, Wahlstrom T, Matre R, Meri S (1997) Complement-regulatory proteins in ovarian malignancies. Int J Cancer 70:14–25

    Article  PubMed  CAS  Google Scholar 

  5. Carroll MC (1998) The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol 16:545–568

    Article  PubMed  CAS  Google Scholar 

  6. Cerny J, Stockinger H, Horejsi V (1996) Noncovalent associations of T lymphocyte surface proteins. Eur J Immunol 26:2335–2343

    Article  PubMed  CAS  Google Scholar 

  7. Cheung NK, Walter EI, Smith-Mensah WH, Ratnoff WD, Tykocinski ML, Medof ME (1988) Decay-accelerating factor protects human tumor cells from complement-mediated cytotoxicity in vitro. J Clin Invest 81:1122–1128

    Article  PubMed  CAS  Google Scholar 

  8. Crnogorac-Jurcevic T, Efthimiou E, Neilsen T, Loader J, Terris B, Stamp G, Baron A, Scarpa A, Lemoine NR (2002) Expression profilling of microdissected pancreatic adenocarcinomas. Oncogene 21:4587–4594

    Article  PubMed  CAS  Google Scholar 

  9. Davis LS, Patel SS, Atkinson JP, Lipsky PE (1988) Decay-accelerating factor functions as a signal transducing molecule for human T cells. J Immunol 141:2246–2252

    PubMed  CAS  Google Scholar 

  10. Durrant LG, Chapman MA, Buckley DJ, Spendlove I, Robins RA, Armitage NC (2003) Enhanced expression of the complement regulatory protein CD55 predicts a poor prognosis in colorectal cancer patients. Cancer Immunol Immunother 52(10): 638– 642

    Article  PubMed  CAS  Google Scholar 

  11. Eichler W, Aust G, Hamann D (1994) Characterization of an early activation-dependent antigen on lymphocytes defined by the monoclonal antibody BL-Ac(F2). Scand J Immunol 39:111–115

    Article  PubMed  CAS  Google Scholar 

  12. Embleton MJ, Gunn B, Byers VS, Baldwin RW (1981) Antitumour reactions of monoclonal antibody against a human osteogenic-sarcoma cell line. Br J Cancer 43:582–587

    PubMed  CAS  Google Scholar 

  13. Farrands PA, Perkins AC, Pimm MV, Embleton MJ, Hardy JD, Baldwin RW, Hardcastle JD (1982) Radioimmunodetection of human colorectal cancers by an anti-tumour monoclonal antibody. Lancet 2:397–400

    Article  PubMed  CAS  Google Scholar 

  14. Fishelson Z, Donin N, Zell S, Schultz S, Kirschfink M (2003) Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol Immunol 40:109–123

    Article  PubMed  CAS  Google Scholar 

  15. Fonsatti E, Altomonte M, Coral S, De Nardo C, Lamaj E, Sigalotti L, Natali PG, Maio M (2000) Emerging role of protectin (CD59) in humoral immunotherapy of solid malignancies. Clin Ter 151:187–93

    PubMed  CAS  Google Scholar 

  16. Freedland SJ, Seligson DB, Liu AY Pantuck AJ, Paik SH, Horvath S, Wieder JA, Zisman A, Nguyen D, Tso CL, Palotie AV, Belldegrun AS (2003) Loss of CD10 (neutral endopeptidase) is a frequent and early event in human prostate cancer. Prostate 55:71–80

    Article  PubMed  Google Scholar 

  17. Gelderman KA, Tomlinson S, Ross G, Gorter A (2004) Complement function in mAB-mediated cancer immunotherapy. Trends Immunol 25:158–164

    Article  PubMed  CAS  Google Scholar 

  18. Gomez-Scotto E, Seigneur M, Renard M, Houbouyan-Reveillard LL, Boisseau MR (2000) [Interest in variations in soluble ICAM-1 plasma levels. From physiology to clinical applications]. J Mal Vasc 25:156–165

    PubMed  CAS  Google Scholar 

  19. Grossman WJ, Verbsky JW, Tollefsen BL, Kemper C, Atkinson JP, Ley TJ (2004) Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 104:2840–2848

    Article  PubMed  CAS  Google Scholar 

  20. Hakulinen J, Junnikkala S, Sorsa T, Meri S (2004) Complement inhibitor membrane cofactor protein (MCP; CD46) is constitutively shed from cancer cell membranes in vesicles and converted by a metalloproteinase to a functionally active soluble form. Eur J Immunol 34:2620–2629

    Article  PubMed  CAS  Google Scholar 

  21. Hamann J, Stortelers C, Kiss-Toth E, Vogel B, Eichler W, van Lier RA (1998) Characterization of the CD55 (DAF)-binding site on the seven-span transmembrane receptor CD97. Eur J Immunol 28:1701–1707

    Article  PubMed  CAS  Google Scholar 

  22. Hamann J, Vogel B, van Schijndel GM, van Lier RA (1996) The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J Exp Med 184:1185–1189

    Article  PubMed  CAS  Google Scholar 

  23. Hanna SM, Spiller OB, Linton S, Mead R, Morgan BP (2002) Rat T cells express neither CD55 nor CD59 and are dependent on Cry for protection from homologous complement. Eur J Immunol 32:502–509

    Article  PubMed  CAS  Google Scholar 

  24. Harris C, Lublin D, Morgan B (2002) Efficient generation of monoclonal antibodies for specific protein domains using recombinant immunoglobulin fusion proteins: pitfalls and solutions. J Immunol Methods 268:245–258

    Article  PubMed  CAS  Google Scholar 

  25. Harris CL, Abbott RJ, Smith RA, Morgan BP, Lea SM (2005) Molecular dissection of interactions between components of the alternative pathway of complement and decay accelerating factor (CD55). J Biol Chem 280:2569–2578

    Article  PubMed  CAS  Google Scholar 

  26. Harris CL, Hughes CE, Williams AS, Goodfellow I, Evans DJ, Caterson B, Morgan BP (2003) Generation of anti-complement ‘prodrugs’: cleavable reagents for specific delivery of complement regulators to disease sites. J Biol Chem 278(38):36068–36076

    Article  PubMed  CAS  Google Scholar 

  27. Hawkey CJ, Holmes CH, Smith PG, Austin EB, Baldwin RW (1986) Patterns of reactivity of the monoclonal antibody 791T/36 with different tumour metastases in the liver. Br J Cancer 54:871–875

    PubMed  CAS  Google Scholar 

  28. Heeger PS, Lalli PN, Lin F, Valujskikh A, Liu J, Muqim N, Xu Y, Medof ME (2005) Decay-accelerating factor modulates induction of T cell immunity. J Exp Med 201:1523–1530

    Article  PubMed  CAS  Google Scholar 

  29. Hindmarsh EJ, Marks RM (1998) Decay-accelerating factor is a component of subendothelial extracellular matrix in vitro, and is augmented by activation of endothelial protein kinase C. Eur J Immunol 28:1052–62

    Article  PubMed  CAS  Google Scholar 

  30. Hiraoka S, Mizuno M, Nasu J, Okazaki H, Makidono C, Okada H, Terada R, Yamamoto K, Fujita T, Shiratori Y (2004) Enhanced expression of decay-accelerating factor, a complement-regulatory protein, in the specialized intestinal metaplasia of Barrett’s esophagus. J Lab Clin Med 143:201–206

    Article  PubMed  CAS  Google Scholar 

  31. Hourcade D, Holers VM, Atkinson JP (1989) The regulators of complement activation (RCA) gene cluster. Adv Immunol 45:381–416

    PubMed  CAS  Google Scholar 

  32. Inaba T, Mizuno M, Ohya S, Kawada M, Uesu T, Nasu J, Takeuchi K, Nakagawa M, Okada H, Fujita T, Tsuji T (1998) Decay-accelerating factor (DAF) in stool specimens as a marker of disease activity in patients with ulcerative colitis (UC). Clin Exp Immunol 112:237–41

    Article  PubMed  CAS  Google Scholar 

  33. Inoue T, Yamakawa M, Takahashi T (2002) Expression of complement regulating factors in gastric cancer cells. Mol Pathol 55:193–199

    Article  PubMed  CAS  Google Scholar 

  34. Jaspars LH, Vos W, Aust G, Van Lier RA, Hamann J (2001) Tissue distribution of the human CD97 EGF-TM7 receptor. Tissue Antigens 57:325–331

    Article  PubMed  CAS  Google Scholar 

  35. Jones EA, English A, Henshaw K, Kinsey SE, Markham AF, Emery P, McGonagle D (2004) Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum 50:817–27

    Article  PubMed  Google Scholar 

  36. Jurianz K, Ziegler S, Donin N, Reiter Y, Fishelson Z, Kirschfink M (2001) K562 erythroleukemic cells are equipped with multiple mechanisms of resistance to lysis by complement. Int J Cancer 93:848–854

    Article  PubMed  CAS  Google Scholar 

  37. Kawada M, Mizuno M, Nasu J, Uesu T, Okazaki H, Okada H, Shimomura H, Yamamoto K, Tsuji T, Fujita T, Shiratori Y (2003) Release of decay-accelerating factor into stools of patients with colorectal cancer by means of cleavage at the site of glycosylphosphatidylinositol anchor. J Lab Clin Med 142:306–312

    Article  PubMed  CAS  Google Scholar 

  38. Kemper C, Verbsky JW, Price JD, Atkinson JP (2005) T-Cell Stimulation and Regulation: With Complements from CD46. Immunol Res 32:31–44

    Article  PubMed  CAS  Google Scholar 

  39. Kim JD, Choi BK, Bae JS, Lee UH, Han IS, Lee HW, Youn BS, Vinay DS, Kwon BS (2003) Cloning and characterization of GITR ligand. Genes Immun 4:564–569

    Article  PubMed  CAS  Google Scholar 

  40. Kim YJ, Mantel PL, June CH, Kim SH, Kwon BS (1999) 4–1BB costimulation promotes human T cell adhesion to fibronectin. Cell Immunol 192:13–23

    Article  PubMed  CAS  Google Scholar 

  41. Kohno H, Mizuno M, Nasu J, Makidono C, Hiraoka S, Inaba T, Yamamoto K, Okada H, Fujita T, Shiratori Y (2005) Stool decay-accelerating factor as a marker for monitoring the disease activity during leukocyte apheresis therapy in patients with refractory ulcerative colitis. J Gastroenterol Hepatol 20:73–78

    Article  PubMed  Google Scholar 

  42. Koretz K, Bruderlein S, Henne C, Moller P (1992) Decay-accelerating factor (DAF, CD55) in normal colorectal mucosa, adenomas and carcinomas. Br J Cancer 66:810–814

    PubMed  CAS  Google Scholar 

  43. Law SK, Fearon DT, Levine RP (1979) Action of the C3b-inactivator on the cell-bound C3b. J Immunol 122:759–765

    PubMed  CAS  Google Scholar 

  44. Leemans JC, te Velt AA, Florquin S, Bennink RJ, de Bruin K, van Lier RAW, van der Poll T, Hamann J (2004) The epidermal growth factor-seven transmembrane (EGF-TM7) receptor CD97 is required for neutrophil migration and host defense. J. Immunol. 172:1125–31

    PubMed  CAS  Google Scholar 

  45. Li L, Spendlove I, Morgan J, Durrant LG (2001). CD55 is over-expressed in the tumour environment. Br J Cancer 84:80–86

    Article  PubMed  CAS  Google Scholar 

  46. Lin HH, Stacey M, Saxby C, Knott V, Chaudhry Y, Evans D, Gordon S, McKnight AJ, Handford P, Lea S (2001) Molecular analysis of EGF-SCR domain mediated protein-protein interactions-dissection of the CD97-CD55 complex. J Biol Chem 276(26):24160–24169

    Article  PubMed  CAS  Google Scholar 

  47. Liu J, Miwa T, Hilliard B, Chen Y, Lambris JD, Wells AD, Song WC (2005) The complement inhibitory protein DAF (CD55) suppresses T cell immunity in vivo. J Exp Med 201:567–577

    Article  PubMed  CAS  Google Scholar 

  48. Madjd Z, Durrant LG, Bradley R, Spendlove I, Ellis IO, Pinder SE (2004) Loss of CD55 is associated with aggressive breast tumors. Clin Cancer Res 10:2797–2803

    Article  PubMed  CAS  Google Scholar 

  49. Madjd Z, Durrant LG, Pinder SE, Ellis IO, Ronan J, Lewis S, Rushmere NK, Spendlove I (2005) Do poor-prognosis breast tumours express membrane cofactor proteins (CD46)? Cancer Immunol Immunother 54:149–156

    Article  PubMed  CAS  Google Scholar 

  50. Madjd Z, Pinder SE, Paish C, Ellis IO, Carmichael J, Durrant LG (2003) Loss of CD59 expression in breast tumours correlates with poor survival. J Pathol 200:633–9

    Article  PubMed  CAS  Google Scholar 

  51. Maenpaa A, Junnikkala S, Hakulinen J, Timonen T, Meri S (1996) Expression of complement membrane regulators membrane cofactor protein (CD46), decay accelerating factor (CD55), and protectin (CD59) in human malignant gliomas. Am J Pathol 148:1139–52

    PubMed  CAS  Google Scholar 

  52. Marcenaro E, Augugliaro R, Falco M, Castriconi R, Parolini S, Sivori S, Romeo E, Millo R, Moretta L, Bottino C, Moretta A (2003) CD59 is physically and functionally associated with natural cytotoxicity receptors and activates human NK cell-mediated cytotoxicity. Eur J Immunol 33:3367–3376

    Article  PubMed  CAS  Google Scholar 

  53. Medof ME, Iida K, Mold C, Nussenzweig V (1982) Unique role of the complement receptor CR1 in the degradation of C3b associated with immune complexes. J Exp Med 156:1739–1754

    Article  PubMed  CAS  Google Scholar 

  54. Medof ME, Walter EI, Rutgers JL, Knowles DM, Nussenzweig V (1987) Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids. J Exp Med 165:848–864

    Article  PubMed  CAS  Google Scholar 

  55. Miwa T, Maldonado MA, Zhou L, Sun X, Luo HY, Cai D, Werth VP, Madaio MP, Eisenberg RA, Song WC (2002) Deletion of decay-accelerating factor (CD55) exacerbates autoimmune disease development in MRL/lpr mice. Am J Pathol 161:1077–1086

    PubMed  CAS  Google Scholar 

  56. Miwa T, Zhou L, Hilliard B, Molina H, Song WC (2002) Crry, but not CD59 and DAF, is indispensable for murine erythrocyte protection in vivo from spontaneous complement attack. Blood 99:3707–3716

    Article  PubMed  CAS  Google Scholar 

  57. 57.Morgan BP, Berg CW, Harris CL (2005) ‘‘Homologous restriction’’ in complement lysis: roles of membrane complement regulators. Xenotransplantation 12:258–265

    Article  Google Scholar 

  58. Morgan BP, Campbell AK (1985) The recovery of human polymorphonuclear leucocytes from sublytic complement attack is mediated by changes in intracellular free calcium. Biochem J 231:205–208

    PubMed  CAS  Google Scholar 

  59. Morgan J, Spendlove I, Durrant LG (2002) The role of CD55 in protecting the tumour environment from complement attack. Tissue Antigens 60:213–223

    Article  PubMed  CAS  Google Scholar 

  60. Muller-Eberhard HJ (1986) The membrane attack complex of complement. Annu Rev Immunol 4:503–528

    Article  PubMed  CAS  Google Scholar 

  61. Mustafa T, Klonisch T, Hombach-Klonisch S, Kehlen A, Schmutzler C, Koehrle J, Gimm O, Dralle H, Hoang-Vu C (2004) Expression of CD97 and CD55 in human medullary thyroid carcinomas. Int J Oncol 24:285–294

    PubMed  CAS  Google Scholar 

  62. Perez OD, Mitchell D, Jager GC, South S, Murriel C, McBride J, Herzenberg LA, Kinoshita S, Nolan GP (2003) Leucocyte Functional antigen 1 lowers T cell activation thresholds and signalling through cytoadhesin-1 and Jun-activating binding protein 1. Nature Immunol 4:1083–1091

    Article  CAS  Google Scholar 

  63. Perkins AC, Pimm MV, Gie C, Marksman RA, Symonds EM, Baldwin RW (1989) Intraperitoneal 131I- and 111In-791T/36 monoclonal antibody in recurrent ovarian cancer: imaging and biodistribution. Nucl Med Commun 10:577–584

    Article  PubMed  CAS  Google Scholar 

  64. Pimm MV, Embleton MJ, Perkins AC, Price MR, Robins RA, Robinson GR, Baldwin RW (1982) In vivo localization of anti-osteogenic sarcoma 791T monoclonal antibody in osteogenic sarcoma xenografts. Int J Cancer 30:75–85

    Article  PubMed  CAS  Google Scholar 

  65. Pimm MV, Perkins AC, Armitage NC, Baldwin RW (1985) Localization of anti-osteogenic sarcoma monoclonal antibody 791T/36 in a primary human osteogenic sarcoma and its subsequent xenograft in immunodeprived mice. Cancer Immunol Immunother 19:18–21

    PubMed  CAS  Google Scholar 

  66. Pizzo P, Giurisato E, Tassi M, Benedetti A, Pozzan T, Viola A (2002) Lipid rafts and T cell receptor signaling: a critical re-evaluation. Eur J Immunol 32:3082–3091

    Article  PubMed  CAS  Google Scholar 

  67. Price MR, Campbell DG, Baldwin RW (1983) Identification of an anti-human osteogenic sarcoma monoclonal-antibody-defined antigen on mitogen-stimulated peripheral blood mononuclear cells. Scand J Immunol 18:411–420

    Article  PubMed  CAS  Google Scholar 

  68. Ramage JM, Metheringham R, Conn A, Spendlove I, Moss RS, Patton DT, Murray JC, Rees RC, Durrant LG (2004) Identification of an HLA-A*0201 cytotoxic T lymphocyte epitope specific to the endothelial antigen Tie-2. Int J Cancer 110:245–50

    Article  PubMed  CAS  Google Scholar 

  69. Roberts AI, Lee L, Schwarz E, Groh V, Spies T, Ebert EC, Jabri B (2001) NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment. J Immunol 167:5527–5530

    PubMed  CAS  Google Scholar 

  70. Russell S (2004) CD46: a complement regulator and pathogen receptor that mediates links between innate and acquired immune function. Tissue Antigens 64:111–118

    Article  PubMed  CAS  Google Scholar 

  71. Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG, Steinle A (2003) Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102:1389–1396

    Article  PubMed  CAS  Google Scholar 

  72. Schmitt CA, Schwaeble W, Wittig BM, Meyer zum Buschenfelde KH, Dippold WG (1999) Expression and regulation by interferon-gamma of the membrane-bound complement regulators CD46 (MCP), CD55 (DAF) and CD59 in gastrointestinal tumours. Eur J Cancer 35:117–24

    Article  PubMed  CAS  Google Scholar 

  73. Shafren DR, Au GG, Nguyen T, Newcombe NG, Haley ES, Beagley L, Johansson ES, Hersey P, Barry RD (2004) Systemic therapy of malignant human melanoma tumors by a common cold-producing enterovirus, coxsackievirus a21. Clin Cancer Res 10:53–60

    Article  PubMed  CAS  Google Scholar 

  74. Shenoy-Scaria AM, Kwong J, Fujita T, Olszowy MW, Shaw AS, Lublin DM (1992) Signal transduction through decay-accelerating factor. Interaction of glycosyl-phosphatidylinositol anchor and protein tyrosine kinases p56lck and p59fyn 1. J Immunol 149:3535–3541

    PubMed  CAS  Google Scholar 

  75. Shimo K, Mizuno M, Nasu J, Hiraoka S, Makidono C, Okazaki H, Yamamoto K, Okada H, Fujita T, Shiratori Y (2004) Complement regulatory proteins in normal human esophagus and esophageal squamous cell carcinoma. J Gastroenterol Hepatol 19:643–647

    Article  PubMed  CAS  Google Scholar 

  76. Sier CF, Gelderman KA, Prins FA, Gorter A (2004) Beta-glucan enhanced killing of renal cell carcinoma micrometastases by monoclonal antibody G250 directed complement activation. Int J Cancer 109:900–908

    Article  PubMed  CAS  Google Scholar 

  77. Simpson KL, Jones A, Norman S, Holmes CH (1997). Expression of the complement regulatory proteins decay accelerating factor (DAF, CD55), membrane cofactor protein (MCP, CD46) and CD59 in the normal human uterine cervix and in premalignant and malignant cervical disease. Am J Pathol 151:1455–1467

    PubMed  CAS  Google Scholar 

  78. Spendlove I, Li L, Carmichael J, Durrant LG (1999) Decay accelerating factor (CD55): A target for cancer vaccines? Cancer Res 59:2282–2286

    PubMed  CAS  Google Scholar 

  79. Symonds EM, Perkins AC, Pimm MV, Baldwin RW, Hardy JG, Williams DA (1985) Clinical implications for immunoscintigraphy in patients with ovarian malignancy: a preliminary study using monoclonal antibody 791T/36. Br J Obstet Gynaecol 92:270–276

    PubMed  CAS  Google Scholar 

  80. Varsano S, Rashkovsky L, Shapiro H, Ophir D, Mark-Bentankur T (1998) Human lung cancer cell lines express cell membrane complement inhibitory proteins and are extremely resistant to complement-mediated lysis; a comparison with normal human respiratory epithelium in vitro, and an insight into mechanism(s) of resistance. Clinical and Experimental Immunology 113:173–82

    Article  PubMed  CAS  Google Scholar 

  81. Walport MJ (2001) Complement. First of two parts. N Engl J Med 344:1058–1066

    Article  PubMed  CAS  Google Scholar 

  82. Walport MJ (2001) Complement. Second of two parts. N Engl J Med 344:1140–1144

    Article  PubMed  CAS  Google Scholar 

  83. Watson NF, Durrant LG, Madjd Z, Ellis IO, Scholefield JH, Spendlove I (2005) Expression of the membrane complement regulatory protein CD59 (protectin) is associated with reduced survival in colorectal cancer patients. Cancer Immunol Immunother 1–8

  84. Williams MR, Perkins AC, Campbell FC, Pimm MV, Hardy JG, Wastie ML, Blamey RW, Baldwin RW (1984) The use of monoclonal antibody 791T/36 in the immunoscintigraphy of primary and metastatic carcinoma of the breast. Clin Oncol 10:375–81

    PubMed  CAS  Google Scholar 

  85. Zaffran Y, Destaing O, Roux A, Ory S, Nheu T, Jurdic P, Rabourdin-Combe C, Astier AL (2001) CD46/CD3 costimulation induces morphological changes of human T cells and activation of Vav, Rac, and extracellular signal-regulated kinase mitogen-activated protein kinase. J Immunol 167:6780–6785

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Spendlove.

Additional information

This article is a symposium paper from the “Robert Baldwin Symposium: 50 years of Cancer Immunotherapy”, held in Nottingham, Great Britain, on 30 June 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spendlove, I., Ramage, J.M., Bradley, R. et al. Complement decay accelerating factor (DAF)/CD55 in cancer. Cancer Immunol Immunother 55, 987–995 (2006). https://doi.org/10.1007/s00262-006-0136-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0136-8

Keywords

Navigation