Skip to main content

Advertisement

Log in

Lentiviral vector expression of tumour antigens in dendritic cells as an immunotherapeutic strategy

  • Symposium Paper
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Therapeutic cancer vaccines need to stimulate a refractory immune system to make an effective anti-tumour response. We have explored the use of lentiviral vectors to deliver tumour antigen genes to dendritic cells (DC) as a possible mechanism of immune stimulation. Direct injection of a lentiviral vector encoding the melanoma antigen NY-ESO-1 in HLA-A2 transgenic mice primed NY-ESO-1-specific CD8+ cells that could be expanded by boosting with an NY-ESO-1 vaccinia virus. The expanded cells could kill NY-ESO-1157–165 peptide-pulsed targets in vivo. In order to examine the priming step directly, we constructed another lentiviral vector expressing the melanoma antigen Melan-A (MART-1). Here we show that Melan-A protein is also efficiently expressed after transduction of human DC cultured from peripheral blood mononuclear cells. When these transduced DC are co-cultured with autologous naïve T cells, they cause the expansion of cells that recognise the HLA-A2 restricted Melan-A27–35 epitope. The expanded cells are functional in that they release IFN-γ upon antigen stimulation. Melan-A lentiviral vector transduced DC caused a similar level of naïve T-cell expansion to Melan-A27–35 peptide-pulsed DC in four experiments using different HLA-A2 positive donors. These data suggest that a vaccine based either on DC transduced with a lentiviral vector ex vivo, or on direct lentiviral vector injection, should be assessed in a phase I clinical trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Antony PA, Restifo NP (2005) CD4+CD25+ T regulatory cells, immunotherapy of cancer, and interleukin-2. J Immunother 28:120–128

    Article  PubMed  CAS  Google Scholar 

  2. Baldwin RW (1955) Immunity to methylcholanthrene-induced tumours in inbred rats following atrophy and regression of the implanted tumours. Br J Cancer 9:652–657

    PubMed  CAS  Google Scholar 

  3. Baldwin RW (1955) Immunity to transplanted tumour: the effect of tumour extracts on the growth of homologous tumours in rats. Br J Cancer 9:646–651

    PubMed  CAS  Google Scholar 

  4. Benlalam H, Linard B, Guilloux Y, Moreau-Aubry A, Derre L, Diez E, Dreno B, Jotereau F, Labarriere N (2003) Identification of five new HLA-B*3501-restricted epitopes derived from common melanoma-associated antigens, spontaneously recognized by tumor-infiltrating lymphocytes. J Immunol 171:6283–6289

    PubMed  CAS  Google Scholar 

  5. Breckpot K, Dullaers M, Bonehill A, van Meirvenne S, Heirman C, de Greef C, van der Bruggen P, Thielemans K (2003) Lentivirally transduced dendritic cells as a tool for cancer immunotherapy. J Gene Med 5:654–667

    Article  PubMed  CAS  Google Scholar 

  6. Breckpot K, Corthals J, Heirman C, Bonehill A, Michiels A, Tuyaerts S, De Greef C, Thielemans K (2004) Activation of monocytes via the CD14 receptor leads to the enhanced lentiviral transduction of immature dendritic cells. Hum Gene Ther 15:562–573

    Article  PubMed  CAS  Google Scholar 

  7. Breckpot K, Heirman C, De Greef C, van der Bruggen P, Thielemans K (2004) Identification of new antigenic peptide presented by HLA-Cw7 and encoded by several MAGE genes using dendritic cells transduced with lentiviruses. J Immunol 172:2232–2237

    PubMed  CAS  Google Scholar 

  8. Butterfield LH, Ribas A, Dissette VB, Amarnani SN, Vu HT, Oseguera D, Wang HJ, Elashoff RM, McBride WH, Mukherji B, Cochran AJ, Glaspy JA, Economou JS (2003) Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin Cancer Res 9:998–1008

    PubMed  CAS  Google Scholar 

  9. Chen X, He J, Chang LJ (2004) Alteration of T cell immunity by lentiviral transduction of human monocyte-derived dendritic cells. Retrovirology 1:37

    Article  PubMed  Google Scholar 

  10. Collins MK, Cerundolo V (2004) Gene therapy meets vaccine development. Trends Biotechnol 22:623–626

    Article  PubMed  CAS  Google Scholar 

  11. Demaison C, Parsley K, Brouns G, Scherr M, Battmer K, Kinnon C, Grez M, Thrasher AJ (2002) High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of imunodeficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 13:803–813

    Article  PubMed  CAS  Google Scholar 

  12. Diebold SS, Cotten M, Koch N, Zenke M (2001) MHC class II presentation of endogenously expressed antigens by transfected dendritic cells. Gene Ther 8:487–493

    Article  PubMed  CAS  Google Scholar 

  13. Esslinger C, Chapatte L, Finke D, Miconnet I, Guillaume P, Levy F, MacDonald HR (2003) In vivo administration of a lentiviral vaccine targets DCs and induces efficient CD8(+) T cell responses. J Clin Invest 111:1673–1681

    PubMed  CAS  Google Scholar 

  14. Firat H, Zennou V, Garcia-Pons F, Ginhoux F, Cochet M, Danos O, Lemonnier FA, Langlade-Demoyen P, Charneau P (2002) Use of a lentiviral flap vector for induction of CTL immunity against melanoma. Perspectives for immunotherapy. J Gene Med 4:38–45

    Article  PubMed  Google Scholar 

  15. He Y, Zhang J, Mi Z, Robbins P, Falo LD Jr (2005) Immunization with lentiviral vector-transduced dendritic cells induces strong and long-lasting T cell responses and therapeutic immunity. J Immunol 174:3808–3817

    PubMed  CAS  Google Scholar 

  16. Hoashi T, Watabe H, Muller J, Yamaguchi Y, Vieira WD, Hearing VJ (2005) MART-1 is required for the function of the melanosomal matrix protein PMEL17/GP100 and the maturation of melanosomes. J Biol Chem 280:14006–14016

    Article  PubMed  CAS  Google Scholar 

  17. Koya RC, Kasahara N, Favaro PM, Lau R, Ta HQ, Weber JS, Stripecke R (2003) Potent maturation of monocyte-derived dendritic cells after CD40L lentiviral gene delivery. J Immunother 26:451–460

    Article  PubMed  CAS  Google Scholar 

  18. Kruger-Krasagakes S, Krasagakis K, Garbe C, Schmitt E, Huls C, Blankenstein T, Diamantstein T (1994) Expression of interleukin 10 in human melanoma. Br J Cancer 70:1182–1185

    PubMed  CAS  Google Scholar 

  19. Kung SK, Bonifacino A, Metzger ME, Ringpis GE, Donahue RE, Chen IS (2005) Lentiviral vector-transduced dendritic cells induce specific T cell response in a nonhuman primate model. Hum Gene Ther 16:527–532

    Article  PubMed  CAS  Google Scholar 

  20. Lizee G, Gonzales MI, Topalian SL (2004) Lentivirus vector-mediated expression of tumor-associated epitopes by human antigen presenting cells. Hum Gene Ther 15:393–404

    Article  PubMed  CAS  Google Scholar 

  21. Lurquin C, Lethe B, De Plaen E, Corbiere V, Theate I, van Baren N, Coulie PG, Boon T (2005) Contrasting frequencies of antitumor and anti-vaccine T cells in metastases of a melanoma patient vaccinated with a MAGE tumor antigen. J Exp Med 201:249–257

    Article  PubMed  CAS  Google Scholar 

  22. Metharom P, Ellem KA, Schmidt C, Wei MQ (2001) Lentiviral vector-mediated tyrosinase-related protein 2 gene transfer to dendritic cells for the therapy of melanoma. Hum Gene Ther 12:2203–2213

    Article  PubMed  CAS  Google Scholar 

  23. Neil S, Martin F, Ikeda Y, Collins M (2001) Postentry restriction to human immunodeficiency virus-based vector transduction in human monocytes. J Virol 75:5448–5456

    Article  PubMed  CAS  Google Scholar 

  24. Palmowski MJ, Lopes L, Ikeda Y, Salio M, Cerundolo V, Collins MK (2004) Intravenous injection of a lentiviral vector encoding NY-ESO-1 induces an effective CTL response. J Immunol 172:1582–1587

    PubMed  CAS  Google Scholar 

  25. Pardoll DM, Topalian SL (1998) The role of CD4+ T cell responses in antitumor immunity. Curr Opin Immunol 10:588–594

    Article  PubMed  CAS  Google Scholar 

  26. Peterson AC, Harlin H, Gajewski TF (2003) Immunization with Melan-A peptide-pulsed peripheral blood mononuclear cells plus recombinant human interleukin-12 induces clinical activity and T-cell responses in advanced melanoma. J Clin Oncol 21:2342–2348

    Article  PubMed  CAS  Google Scholar 

  27. Pittet MJ, Valmori D, Dunbar PR, Speiser DE, Lienard D, Lejeune F, Fleischhauer K, Cerundolo V, Cerottini JC, Romero P (1999) High frequencies of naive Melan-A/MART-1-specific CD8(+) T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. J Exp Med 190:705–715

    Article  PubMed  CAS  Google Scholar 

  28. Rohrlich PS, Cardinaud S, Lule J, Montero-Julian FA, Prodhomme V, Firat H, Davignon JL, Perret E, Monseaux S, Necker A, Michelson S, Lemonnier FA, Charneau P, Davrinche C (2004) Use of a lentiviral vector encoding a HCMV-chimeric IE1-pp65 protein for epitope identification in HLA-Transgenic mice and for ex vivo stimulation and expansion of CD8(+) cytotoxic T cells from human peripheral blood cells. Hum Immunol 65:514–522

    Article  PubMed  CAS  Google Scholar 

  29. Tan PH, Beutelspacher SC, Xue SA, Wang YH, Mitchell P, McAlister JC, Larkin DF, McClure MO, Stauss HJ, Ritter MA, Lombardi G, George AJ (2005) Modulation of human dendritic-cell function following transduction with viral vectors: implications for gene therapy. Blood 105:3824–3832

    Article  PubMed  CAS  Google Scholar 

  30. Van Der Bruggen P, Zhang Y, Chaux P, Stroobant V, Panichelli C, Schultz ES, Chapiro J, Van Den Eynde BJ, Brasseur F, Boon T (2002) Tumor-specific shared antigenic peptides recognized by human T cells. Immunol Rev 188:51–64

    Article  Google Scholar 

  31. Weber J, Sondak VK, Scotland R, Phillip R, Wang F, Rubio V, Stuge TB, Groshen SG, Gee C, Jeffery GG, Sian S, Lee PP (2003) Granulocyte-macrophage-colony-stimulating factor added to a multipeptide vaccine for resected Stage II melanoma. Cancer 97:186–200

    Article  PubMed  CAS  Google Scholar 

  32. Yamshchikov GV, Mullins DW, Chang CC, Ogino T, Thompson L, Presley J, Galavotti H, Aquila W, Deacon D, Ross W, Patterson JW, Engelhard VH, Ferrone S, Slingluff CL Jr (2005) Sequential immune escape and shifting of T cell responses in a long-term survivor of melanoma. J Immunol 174:6863–6871

    PubMed  CAS  Google Scholar 

  33. Zarour HM, Kirkwood JM, Kierstead LS, Herr W, Brusic V, Slingluff CL Jr, Sidney J, Sette A, Storkus WJ (2000) Melan-A/MART-1 (51–73) represents an immunogenic HLA-DR4-restricted epitope recognized by melanoma-reactive CD4(+) T cells. Proc Natl Acad Sci USA 97:400–405

    Article  PubMed  CAS  Google Scholar 

  34. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Collins.

Additional information

This article is a symposium paper from the “Robert Baldwin Symposium: 50 years of Cancer Immunotherapy”, held in Nottingham, Great Britain, on 30th June 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes, L., Fletcher, K., Ikeda, Y. et al. Lentiviral vector expression of tumour antigens in dendritic cells as an immunotherapeutic strategy. Cancer Immunol Immunother 55, 1011–1016 (2006). https://doi.org/10.1007/s00262-005-0095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-005-0095-5

Keywords

Navigation