Skip to main content

Effective induction of anti-melanoma immunity following genetic vaccination with synthetic mRNA coding for the fusion protein EGFP.TRP2


RNA-based genetic immunization represents an alternative novel strategy for antigen-specific cancer vaccines. In the present paper we investigate the use of synthetic messenger RNA in an experimental melanoma model. We show that gene gun-based immunization using synthetic RNA mediates gene expression in the epidermis and effectively induces antigen-specific cellular and humoral immunity in mice in vivo. Importantly, bombardment of the skin with RNA coding for the melanocytic self-antigen TRP2 linked to the immunogenic protein EGFP was associated with protection against experimentally induced B16 melanoma lung metastases and vitiligo-like fur depigmentation. Our results provide a scientific basis for clinical trials using synthetic mRNA encoding melanocytic antigens linked to immunogenic helper proteins for vaccination of patients with melanoma.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3



Enhanced green fluorescent protein


Murine tyrosinase-related protein 2


  1. 1.

    Boon T, Coulie PG, Van den EB (1997) Tumor antigens recognized by T cells. Immunol Today 18:267

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Rosenberg SA (2000) Identification of cancer antigens: impact on development of cancer immunotherapies. Cancer J 6(Suppl 3):200

    Google Scholar 

  3. 3.

    Wölfel T, Van Pel A, Brichard V, Schneider J, Seliger B, Meyer zum Büschenfelde KH, Boon T (1994) Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. Eur J Immunol 24:759

    PubMed  Article  Google Scholar 

  4. 4.

    Wölfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E, De Plaen E, Hankeln T, Meyer zum Buschenfelde KH, Beach D (1995) A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269:1281

    PubMed  Article  Google Scholar 

  5. 5.

    Bloom MB, Perry-Lalley D, Robbins PF, Li Y, el-Gamil M, Rosenberg SA, Yang JC (1997) Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J Exp Med 185:453

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Tuting T, Steitz J, Bruck J, Gambotto A, Steinbrink K, Deleo AB, Robbins P, Knop J, Enk AH (1999) Dendritic cell-based genetic immunization in mice with a recombinant adenovirus encoding murine TRP2 induces effective anti-melanoma immunity. J Gene Med 1:400

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Bowne WB, Srinivasan R, Wolchok JD, Hawkins WG, Blachere NE, Dyall R, Lewis JJ, Houghton AN (1999) Coupling and uncoupling of tumor immunity and autoimmunity. J Exp Med 190:1717

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Steitz J, Bruck J, Steinbrink K, Enk A, Knop J, Tuting T (2000) Genetic immunization of mice with human tyrosinase-related protein 2: implications for the immunotherapy of melanoma. Int J Cancer 86:89

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Steitz J, Bruck J, Gambotto A, Knop J, Tuting T (2002) Genetic immunization with a melanocytic self-antigen linked to foreign helper sequences breaks tolerance and induces autoimmunity and tumor immunity. Gene Ther 9:208

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Britten CM, Meyer RG, Frankenberg N, Huber C, Wölfel T (2004) The use of clonal mRNA as an antigenic format for the detection of antigen-specific T lymphocytes in IFN-γ ELISPOT assays. J Immunol Methods 287:125

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Steitz J, Bruck J, Knop J, Tuting T (2001) Adenovirus-transduced dendritic cells stimulate cellular immunity to melanoma via a CD4(+) T cell-dependent mechanism. Gene Ther 8:1255

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Bronte V, Apolloni E, Ronca R, Zamboni P, Overwijk WW, Surman DR, Restifo NP, Zanovello P (2000) Genetic vaccination with and quot;self and quot; tyrosinase-related protein 2 causes melanoma eradication but not vitiligo. Cancer Res 60:253

    PubMed  CAS  Google Scholar 

  13. 13.

    Lane C, Leitch J, Tan X, Hadjati J, Bramson JL, Wan Y (2004) Vaccination-induced autoimmune vitiligo is a consequence of secondary trauma to the skin. Cancer Res 64:1509

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Schreurs MW, Eggert AA, de Boer AJ, Vissers JL, van HT, Offringa R, Figdor CG, Adema GJ (2000) Dendritic cells break tolerance and induce protective immunity against a melanocyte differentiation antigen in an autologous melanoma model. Cancer Res 60:6995

    PubMed  CAS  Google Scholar 

  15. 15.

    Shibagaki N, Udey MC (2002) Dendritic cells transduced with protein antigens induce cytotoxic lymphocytes and elicit antitumor immunity. J Immunol 168:2393

    PubMed  CAS  Google Scholar 

  16. 16.

    Wang HY, Fu T, Wang G, Zeng G, Perry-Lalley DM, Yang JC, Restifo NP, Hwu P, Wang RF (2002) Induction of CD4(+) T cell-dependent antitumor immunity by TAT-mediated tumor antigen delivery into dendritic cells. J Clin Invest 109:1463

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Shimizu K, Thomas EK, Giedlin M, Mule JJ (2001) Enhancement of tumor lysate-pulsed and peptide-pulsed dendritic cell-based vaccines by the addition of foreign helper protein. Cancer Res 61:2618

    PubMed  CAS  Google Scholar 

  18. 18.

    Condon C, Watkins SC, Celluzzi CM, Thompson K, Falo LD Jr (1996) DNA-based immunization by in vivo transfection of dendritic cells. Nat Med 2:1122

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Porgador A, Irvine KR, Iwasaki A, Barber BH, Restifo NP, Germain RN (1998) Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med 188:1075

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Qiu P, Ziegelhoffer P, Sun J, Yang NS (1996) Gene gun delivery of mRNA in situ results in efficient transgene expression and genetic immunization. Gene Ther 3:262

    PubMed  CAS  Google Scholar 

  22. 22.

    Hoerr I, Obst R, Rammensee HG, Jung G (2000) In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 30:1

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Boczkowski D, Nair SK, Snyder D, Gilboa E (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 184:465

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Ashley DM, Faiola B, Nair S, Hale LP, Bigner DD, Gilboa E (1997) Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med 186:1177

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Zhang W, He L, Yuan Z, Xie Z, Wang J, Hamada H, Cao X (1999) Enhanced therapeutic efficacy of tumor RNA-pulsed dendritic cells after genetic modification with lymphotactin. Hum Gene Ther 10:1151

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, Lebkowski JS, Vieweg J, Gilboa E (2000) Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med 6:1011

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Granstein RD, Ding W, Ozawa H (2000) Induction of anti-tumor immunity with epidermal cells pulsed with tumor-derived RNA or intradermal administration of RNA. J Invest Dermatol 114:632

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Strobel I, Berchtold S, Gotze A, Schulze U, Schuler G, Steinkasserer A (2000) Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes. Gene Ther 7:2028

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Thornburg C, Boczkowski D, Gilboa E, Nair SK (2000) Induction of cytotoxic T lymphocytes with dendritic cells transfected with human papillomavirus E6 and E7 RNA: implications for cervical cancer immunotherapy. J Immunother 23:412

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Su Z, Peluso MV, Raffegerst SH, Schendel DJ, Roskrow MA (2002) Antigen presenting cells transfected with LMP2a RNA induce CD4+ LMP2a-specific cytotoxic T lymphocytes, which kill via a Fas-independent mechanism. Leuk Lymphoma 43:1651

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Weissman D, Ni H, Scales D, Dude A, Capodici J, McGibney K, Abdool A, Isaacs SN, Cannon G, Kariko K (2000) HIV gag mRNA transfection of dendritic cells (DC) delivers encoded antigen to MHC class I and II molecules, causes DC maturation, and induces a potent human in vitro primary immune response. J Immunol 165:4710

    PubMed  CAS  Google Scholar 

  32. 32.

    Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E (1998) Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 16:364

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Heiser A, Dahm P, Yancey DR, Maurice MA, Boczkowski D, Nair SK, Gilboa E, Vieweg J (2000) Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro. J Immunol 164:5508

    PubMed  CAS  Google Scholar 

  34. 34.

    Su Z, Vieweg J, Weizer AZ, Dahm P, Yancey D, Turaga V, Higgins J, Boczkowski D, Gilboa E, Dannull J (2002) Enhanced induction of telomerase-specific CD4(+) T cells using dendritic cells transfected with RNA encoding a chimeric gene product. Cancer Res 62:5041

    PubMed  CAS  Google Scholar 

  35. 35.

    Zeis M, Siegel S, Wagner A, Schmitz M, Marget M, Kuhl-Burmeister R, Adamzik I, Kabelitz D, Dreger P, Schmitz N, Heiser A (2003) Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-RNA-transfected dendritic cells. J Immunol 170:5391

    PubMed  CAS  Google Scholar 

  36. 36.

    Siegel S, Wagner A, Kabelitz D, Marget M, Coggin J Jr, Barsoum A, Rohrer J, Schmitz N, Zeis M (2003) Induction of cytotoxic T-cell responses against the oncofetal antigen-immature laminin receptor for the treatment of hematologic malignancies. Blood 102:4416

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Liao X, Li Y, Bonini C, Nair S, Gilboa E, Greenberg PD, Yee C (2004) Transfection of RNA encoding tumor antigens following maturation of dendritic cells leads to prolonged presentation of antigen and the generation of high-affinity tumor-reactive cytotoxic T lymphocytes. Mol Ther 9:757

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Boczkowski D, Nair SK, Nam JH, Lyerly HK, Gilboa E (2000) Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res 60:1028

    PubMed  CAS  Google Scholar 

  39. 39.

    Heiser A, Maurice MA, Yancey DR, Wu NZ, Dahm P, Pruitt SK, Boczkowski D, Nair SK, Ballo MS, Gilboa E, Vieweg J (2001) Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA. J Immunol 166:2953

    PubMed  CAS  Google Scholar 

  40. 40.

    Milazzo C, Reichardt VL, Muller MR, Grunebach F, Brossart P (2003) Induction of myeloma-specific cytotoxic T cells using dendritic cells transfected with tumor-derived RNA. Blood 101:977

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Nencioni A, Muller MR, Grunebach F, Garuti A, Mingari MC, Patrone F, Ballestrero A, Brossart P (2003) Dendritic cells transfected with tumor RNA for the induction of antitumor CTL in colorectal cancer. Cancer Gene Ther 10:209

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Muller MR, Tsakou G, Grunebach F, Schmidt SM, Brossart P (2004) Induction of chronic lymphocytic leukemia (CLL)-specific CD4-mediated and CD8-mediated T-cell responses using RNA-transfected dendritic cells. Blood 103:1763

    PubMed  Article  Google Scholar 

  43. 43.

    Heiser A, Coleman D, Dannull J, Yancey D, Maurice MA, Lallas CD, Dahm P, Niedzwiecki D, Gilboa E, Vieweg J (2002) Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 109:409

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Su Z, Dannull J, Heiser A, Yancey D, Pruitt S, Madden J, Coleman D, Niedzwiecki D, Gilboa E, Vieweg J (2003) Immunological and linical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res 63:2127

    PubMed  CAS  Google Scholar 

  45. 45.

    Nair SK, Morse M, Boczkowski D, Cumming RI, Vasovic L, Gilboa E, Lyerly HK (2002) Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann Surg 235:540

    PubMed  Article  Google Scholar 

  46. 46.

    Kobayashi T, Yamanaka R, Homma J, Tsuchiya N, Yajima N, Yoshida S, Tanaka R (2003) Tumor mRNA-loaded dendritic cells elicit tumor-specific CD8(+) cytotoxic T cells in patients with malignant glioma. Cancer Immunol Immunother 52:632

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Steitz J, Bruck J, Lenz J, Buchs S, Tuting T (2005) Peripheral CD8+ T cell tolerance against melanocytic in the skin is regulated in two steps by CD4+ T cells and local inflammation: implications for the pathophysiology of vitiligo. J Invest Dermatol 124:144–155

    PubMed  Article  CAS  Google Scholar 

Download references


We thank Stefanie Büchs and Petra Speuser for excellent technical assistance. This work was supported by the ’‘Deutsche Forschungsgemeinschaft” (For 367/2 to TT and SFB432/A1 to TW) and by the “Deutsche Krebshilfe” (70–2427-Hul to TW and 10–1870-Tü2 to TT).

Author information



Corresponding author

Correspondence to Thomas Tüting.

Additional information

Julia Steitz and Cedrik M. Britten contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Steitz, J., Britten, C.M., Wölfel, T. et al. Effective induction of anti-melanoma immunity following genetic vaccination with synthetic mRNA coding for the fusion protein EGFP.TRP2. Cancer Immunol Immunother 55, 246–253 (2006).

Download citation


  • RNA
  • Melanoma
  • Vaccine
  • TRP2