Skip to main content

Advertisement

Log in

Beneficial therapeutic effects with different particulate structures of murine polyomavirus VP1-coat protein carrying self or non-self CD8 T cell epitopes against murine melanoma

  • Symposium Paper
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Polyomavirus-like-particles (PLPs) are empty, non-replicative, non-infectious particles that represent a potent antigen-delivery system against malignant disease. Protective anti-tumour immunity can be induced under therapy conditions by subcutaneous (s.c.) treatment with particulate antigenic structures like chimerical polyomavirus-pentamers (PPs). These PPs displaying an immunodominant H-2Kb-restricted ovalbumin (OVA)257-264 epitope evoked nearly complete tumour remission in MO5 (B16-OVA) melanoma-bearing C57BL/6 mice by two s.c. applications in a weekly interval. The immunotherapeutic intervention started at day 4 after melanoma implant. Furthermore, 40% of melanoma-bearing mice vaccinated with heterologous PPs carrying a H-2Kb-restricted cytotoxic T lymphocyte (CTL) epitope derived from of tyrosinase-related protein 2 (TRP2) survived similar treatment conditions. However, a late immunotherapeutic onset at day 10 post melanoma inoculation revealed no significant differences between the therapeutic values (40–60% survival) of VP1-OVA252-270 and VP1-TRP2180-192 PPs, respectively. These experiments underlined the capacity of PPs to break T cell tolerance against a differentially expressed self-antigen. As a correlate for preventive and therapeutic immunity against MO5 melanoma the number of OVA257-264- or TRP2180-188-specific CD8 T cells were significantly increased within the splenocyte population of treated mice as measured by H-2Kb-OVA257-264-PE tetramer staining or appropriate ELISPOT assays, respectively. These results reveal that heterologous PLPs and even chimerical PPs represent highly efficient antigen carriers for inducing CTL responses underlining their potential as immunotherapeutics against cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APCs:

Antigen presenting cells

CMI:

Cell-mediated immunity

CTL:

Cytotoxic T lymphocytes

DCs:

Dendritic cells

LPS:

Lipopolysaccharide

MHC:

Major histocompatibility complex

OVA:

Ovalbumin

PCS:

Photon correlation spectroscopy

PE:

Phycoerythrin

PLPs:

Murine polyomavirus-like-particles

PPs:

Murine polyomavirus-like-pentamers

TRP2:

Tyrosinase-related protein 2

VP1:

Viral protein 1 of murine polyomavirus

References

  • Abbing A, Blaschke UK, Grein S, Kretschmar M, Stark CMB, Thies MJW, Walter J, Weigand M, Woith DC, Hess J, Reiser COA (2004) Efficient intracellular delivery of a protein and a low molecular weight substance via recombinant polyomavirus-like particles. J Biol Chem 279:27410–27421

    Article  Google Scholar 

  • Bellone M, Cantarella D, Castiglioni P, Crosti MC, Ronchetti A, Moro M, Garancini MP, Casorati G, Dellabona P (2000) Relevance of the tumor antigen in the validation of three vaccination strategies for melanoma. J Immunol 165:2651–2656

    Google Scholar 

  • Beyer T, Herrmann M, Reiser C, Bertling W, Hess J (2001) Bacterial carriers and virus-like-particles as antigen delivery devices: role of dendritic cells in antigen presentation. Curr Drug Targets Infect Disord 1:287–302

    Google Scholar 

  • Bloom MB, Perry-Lalley D, Robbins PF, Li Y, El-Gamil M, Rosenberg SA, Yang JC (1997) Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J Exp Med 185:453–459

    Article  CAS  PubMed  Google Scholar 

  • Boisgerault F, Moron G, Leclerc C (2002) Virus-like particles: a new family of delivery systems. Exp Rev Vaccines 1:101–109

    Article  Google Scholar 

  • Brinkman M, Walter J, Jennes I, Neugebauer M, Bertling W, Grein S, Thies MJW, Weigand M, Beyer T, Herrmann M, Reiser COA, Hess J (2004) Recombinant murine polyoma virus-like-particles induce protective anti-tumour immunity. Lett Drug Des Disc 1:137–147

    Google Scholar 

  • Bungener L, Idema J, ter Veer W, Huckriede A, Daemen T, Wilschut J (2002) Virosomes in vaccine development: induction of cytotoxic T lymphocyte activity with virosome-encapsulated protein antigens. J Liposome Res 12:155–163

    Article  Google Scholar 

  • Byers AM, Kemball CC, Moser JM, Lukacher AE (2003) Cutting edge: rapid in vivo CTL activity by polyoma virus-specific effector and memory CD8+ T cells. J Immunol 171:17–21

    Google Scholar 

  • Celluzzi CM, Falo LD Jr (1997) Epidermal dendritic cells induce potent antigen-specific CTL-mediated immunity. J Invest Dermatol 108:716–720

    Article  Google Scholar 

  • Chackerian B, Lenz P, Lowy DR, Schiller JT (2002) Determinants of autoantibody induction by conjugated papillomavirus virus-like particles. J Immunol 169(11):6120–6126

    Google Scholar 

  • Da Silva DM, Pastrana DV, Schiller JT, Kast WM (2001) Effect of preexisting neutralizing antibodies on the anti-tumor immune response induced by chimerical human papillomavirus virus-like particle vaccines. Virology 290:350–360

    Article  Google Scholar 

  • Da Silva DM, Schiller JT, Kast WM (2003) Heterologous boosting increases immunogenicity of chimerical papillomavirus virus-like-particle vaccines. Vaccine 21:3219–3227

    Article  Google Scholar 

  • Deml L, Wild J, Wagner R (2004) Virus-like particles: a novel tool for the induction and monitoring for both T-helper and cytotoxic T-lymphocyte activity. Methods Mol Med 94:133–157

    Google Scholar 

  • Doerries K (1996) Virus-host interactions and diagnosis of human polyomavirus-associated disease. Interviroloy 39:165–175

    Google Scholar 

  • Freyschmidt EJ, Alsonso A, Hartmann G, Gissmann L (2004) Activation of dendritic cells and induction of T cell responses by HPV 16 L1/E7 chimeric virus-like particles are enhanced by CpG ODN or sorbitol. Antivir Ther 9(4):479–489

    Google Scholar 

  • Greenstone HL, Nieland JD, de Visser KE, de Brujin MLH, Kirnbauer R, Roden RBS, Lowy DR, Kast M, Schiller JT (1998) Chimerical papillomavirus virus-like particles elicit antitumor immunity against the E7 oncoprotein in an HPV16 tumor model. Proc Natl Acad Sci USA 95:1800–1805

    Article  CAS  PubMed  Google Scholar 

  • Hess J, Schaible U, Raupach B, Kaufmann SHE (2000) Exploiting the immune system: new vaccines against intracellular bacteria. Adv Immunol 75:1–88

    Google Scholar 

  • Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, Wu S, Vuthoori S, Ko K, Zavala F, Pamer EG, Littman DR, Lang RA (2002) In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity 17:211–220

    Article  Google Scholar 

  • Lenz P, Day PM, Pang Y-YS, Frye SA, Jensen PN, Lowy DR, Schiller JT (2001) Papillomavirus-like particles induce acute activation of dendritic cells. J Immunol 166:5346–5355

    Google Scholar 

  • Lenz P, Thompson CD, Day PM, Bacot SM, Lowy DR, Schiller JT (2003) Interactioon of papillomavirus virus-like particles with human myeloid antigen-presenting cells. Clin Immunol 106(3):231–237

    Article  Google Scholar 

  • Li M, Davey GM, Sutherland RM, Kurts C, Lew AM, Hirst C, Carbone FR, Heath WR (2001) Cell-associated ovalbumin is cross-presented much more efficiently than soluble ovalbumin in vivo. J Immunol 166:6099–6103

    Google Scholar 

  • Moron G, Rueda P, Casal I, Leclerc C (2002) CD8alpha- CD11b+ dendritic cells present exogenous virus-like particles to CD8+ T cells and subsequently express CD8alpha and CD205 molecules. J Exp Med 195(10):1233–1245

    Article  Google Scholar 

  • Moron VG, Rueda P, Sedlik C, Leclerc C (2003) In vivo, dendritic cells can cross-present virus-like-particles using an endosome-to-cytosol pathway. J Immunol 171(5):2242–2240

    Google Scholar 

  • Öhlschlaeger P, Osen W, Dell K, Faath S, Garcea RL, Jochmus I, Muller M, Pawlita M, Schafer K, Sehr P, Staib C, Sutter G, Gissmann L (2003) Human papillomavirus type 16 L1 capsomeres induce L1-specific cytotoxic T lymphocytes and tumor regression in C57BL/6 mice. J Virol 77:4635–4645

    Article  Google Scholar 

  • Parkhurst MR, Fitzgerald EB, Southwood S, Sette A, Rosenberg SA, Kawakami Y (1998) Identification of a shared HLA-A*0201-restricted T-cell epitope from the melanoma antigen tyrosinase-related protein 2 (TRP2). Cancer Res 58:4895–4901

    CAS  PubMed  Google Scholar 

  • Ruedl C, Storni T, Lechner F, Baechi T, Bachmann MF (2002) Cross-presentation of virus-like particles by skin-derived CD8 dendritic cells: a dispensable role for TAP. Eur J Immunol 32:818–825

    Google Scholar 

  • Scalzo AA, Elliott SL, Cox J, Gardner J, Moss DJ, Suhrbier A (1995) Induction of protective cytotoxic T cells to murine cytomegalovirus by using a nonapeptide and a human-compatible adjuvant (Montanide ISA 720). J Virol 69(2):1306–1309

    CAS  PubMed  Google Scholar 

  • Schreurs MWJ, Eggert AAO, de Boer AJ, Vissers JLM, van Hall T, Offringa R, Figdor CG, Adema GJ (2000) Dendritic cells break tolerance and induce protective immunity against a melanocyte differentiation antigen in an autologous melanoma model. Cancer Res 60:6995–7001

    Google Scholar 

  • Sedlik C, Saron M, Sarraseca J, Casal I, Leclerc C (1997) Recombinant parvovirus-like particles as an antigen carrier: a novel nonreplicative exogenous antigen to elicit protective antiviral cytotoxic T cells. Proc Natl Acad Sci USA 94:7503–7508

    Article  Google Scholar 

  • Shibagaki N, Udey MC (2003) Dendritic cells transduced with TAT protein transduction domain-containing tyrosinase-related protein 2 vaccinate against murine melanoma. Eur J Immunol 33:850–860

    Article  Google Scholar 

  • Stuhler G, Walden P (eds) (2002) T cells in tumor immunity in Cancer Immune Therapy. Wiley, Weinheim

  • Van Elsas A, Sutmuller RPM, Hurwitz AA, Ziskin J, Villasenor J, Medema J-P, Overwijk WW, Restifo NP, Melief CJM, Offringa R, Allison JP (2001) Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on ctotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy. J Exp Med 194:481–489

    Article  PubMed  Google Scholar 

  • Wang RF, Wang HY (2002) Enhancement of antitumor immunity by prolonging antigen presentation on dendritic cells. Nat Biotechnol 20:149–154

    Article  Google Scholar 

  • Wang RF, Appella E, Kawakami Y, Kang X, Rosenberg SA (1996) Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J Exp Med 184:2207–2216

    Article  CAS  PubMed  Google Scholar 

  • Wang HY, Fu T, Wang G, Zeng G, Perry-Lalley DM, Yang JC, Restifo NP, Hwu P, Wang R-F (2002) Induction of CD4 T cell-dependent antitumor immunity by TAT-mediated tumor antigen delivery into dendritic cells. J Clin Invest 109:1463–1470

    Article  Google Scholar 

  • Yamshchikov GV, Barnd DL, Eastham S, Galavotti H, Patterson JW, Deacon DH, Teates D, Neese P, Grosh WW, Petroni G, Engelhard VH, Slingluff CL Jr (2001) Evaluation of peptide vaccine immunogenicity in draining lymph nodes and peripheral blood of melanoma patients. Int J Cancer 92:703–711

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Bosch ML, Salgaller ML (2002) Current methods for loading dendritic cells with tumor antigen for the induction of antitumor immunity. J Immunother 25:289–303

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the BMBF projects ‘Biochance‘ 0313044 and ‘Supramolecular Drug-Delivery-Systems’ 03C0308 A-C. Prof. K. L. Rock generously provided the MO5 melanoma cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Hess.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinkman, M., Walter, J., Grein, S. et al. Beneficial therapeutic effects with different particulate structures of murine polyomavirus VP1-coat protein carrying self or non-self CD8 T cell epitopes against murine melanoma. Cancer Immunol Immunother 54, 611–622 (2005). https://doi.org/10.1007/s00262-004-0655-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-004-0655-0

Keywords

Navigation