Skip to main content

Advertisement

Log in

Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Heat shock proteins (HSPs) are a large family of proteins with different molecular weights and different intracellular localizations. These proteins undertake crucial functions in maintaining cell homeostasis, and therefore they have been conserved during evolution. Hsp70 and Grp94/gp96, due to their peptide chaperone capacity and their ability to actively interact with professional antigen-presenting cells (APCs), are also endowed with crucial immunological functions. The immunological properties of these proteins and their implications for vaccine in human cancer will be discussed. Immunological and clinical data of phase I/II studies in melanoma and colorectal cancer patients will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold-Schild D, Hanau D, Spehner D, Schmid C, Rammensee HG, de la Salle H, Schild H (1999) Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol 162:3757

    CAS  PubMed  Google Scholar 

  2. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435

    CAS  PubMed  Google Scholar 

  3. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028

    Article  CAS  PubMed  Google Scholar 

  4. Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303

    CAS  PubMed  Google Scholar 

  5. Becker T, Hartl FU, Wieland F (2002) CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 158:1277

    Article  CAS  PubMed  Google Scholar 

  6. Belli F, Testori A, Rivoltini L, Maio M, Andreola G, Sertoli MR, Gallino G, Piris A, Cattelan A, Lazzari I, Carrabba M, Scita G, Santantonio C, Pilla L, Tragni G, Lombardo C, Arienti F, Marchianò A, Queirolo P, Bertolini F, Cova A, Lamaj E, Ascani L, Camerini R, Corsi M, Cascinelli N, Lewis JJ, Srivastava P, Parmiani G (2002) Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol 20:4169

    Article  CAS  PubMed  Google Scholar 

  7. Berwin B, Nicchitta CV (2001) To find the road traveled to tumor immunity: the trafficking itineraries of molecular chaperones in antigen-presenting cells. Traffic 2:690

    Article  CAS  PubMed  Google Scholar 

  8. Binder RJ, Han DK, Srivastava PK (2000) CD91: a receptor for heat shock protein gp96. Nat Immunol 1:151–155

    Google Scholar 

  9. Bukau B, Deuerling E, Pfund C, Craig EA (2000) Getting newly synthesized proteins into shape. Cell 101:119–122

    CAS  PubMed  Google Scholar 

  10. Castelli C, Ciupitu AM, Rini F, Rivoltini L, Mazzocchi A, Kiessling R, Parmiani G (2001) Human heat shock protein 70 peptide complexes specifically activate anti-melanoma T cells. Cancer Res 61:222

    CAS  PubMed  Google Scholar 

  11. Craig EA, Weissman JS, Horwich AL (1994) Heat shock proteins and molecular chaperones: mediators of protein conformation and turnover in the cell. Cell 78:365

    CAS  PubMed  Google Scholar 

  12. Delneste Y, Magistrelli G, Gauchat J, Haeuw J, Aubry J, Nakamura K, Kawakami-Honda N, Goetsch L, Sawamura T, Bonnefoy J, Jeannin P (2002) Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17:353

    CAS  PubMed  Google Scholar 

  13. Figueras J, Valls C, Rafecas A, Fabregat J, Ramos E, Jaurrieta E (2001) Resection rate and effect of postoperative chemotherapy on survival after surgery for colorectal liver metastasis. Br J Surg 88:980

    CAS  Google Scholar 

  14. Fourie AM, Sambrook JF, Gething MJ (1994) Common and divergent peptide binding specificities of hsp70 molecular chaperones. J Biol Chem 269:30470

    CAS  PubMed  Google Scholar 

  15. Heath WR, Carbone FR (2001) Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 19:47

    Google Scholar 

  16. Ishii T, Udono H, Yamano T, Ohta H, Uenaka A, Ono T, Hizuta A, Tanaka N, Srivastava PK, Nakayama E (1999) Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J Immunol 162:1303

    CAS  PubMed  Google Scholar 

  17. Johnson JL, Craig EA (1997) Protein folding in vivo: unraveling complex pathways. Cell 90:201

    CAS  PubMed  Google Scholar 

  18. Kuppner MC, Gastpar R, Gelwer S, Nossner E, Ochmann O, Scharner A, Issels RD (2001) The role of heat shock protein (hsp70) in dendritic cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Eur J Immunol 3:1602

    Article  Google Scholar 

  19. Linderoth NA, Popowicz A, Sastry S (2000) Identification of the peptide-binding site in the heat shock chaperone/tumor rejection antigen gp96 (Grp94). J Biol Chem 275:5472

    Article  CAS  PubMed  Google Scholar 

  20. Mazzaferro V, Coppa J, Carabba M, Rivoltini L, Schiavo M, Regalia E, Mariani L, Camerini T, Marchiano A, Andreola S. Camerini R, Corsi M, Lewis JJ, Srivastava PK, Parmiani G (2003) Vaccination with autolgous tumor derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res 9:3235

    Google Scholar 

  21. Menoret A, Li Z, Niswonger ML, Altmeyer A, Srivastava PK (2001) An endoplasmic reticulum protein implicated in chaperoning peptides to major histocompatibility of class I is an aminopeptidase. J Biol Chem 276:33313

    Article  PubMed  Google Scholar 

  22. Minagawa M, Makuuchi M, Torzilli G, Takayama T, Kawasaki S, Kosuge T, Yamamoto J, Imamura H (2000) Extension of the frontiers of surgical indications in the treatment of liver metastases from colorectal cancer: long-term results. Ann Surg 231:487

    CAS  PubMed  Google Scholar 

  23. Nair S, Wearsch PA, Mitchell DA, Wassenberg JJ, Gilboa E, Nicchitta CV (1999) Calreticulin displays in vivo peptide-binding activity and can elicit CTL responses against bound peptides. J Immunol 162:6426

    CAS  PubMed  Google Scholar 

  24. Nieland TJ, Tan MC, Monne-van Muijen M, Koning F, Kruisbeek AM, van Bleek GM (1996) Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94. Proc Natl Acad Sci U S A 93:6135

    Article  CAS  PubMed  Google Scholar 

  25. Noessner E, Gastpar R, Milani V, Brandl A, Hutzler PJ, Kuppner MC, Roos M, Kremmer E, Asea A, Calderwood SK, Issels RD (2002) Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J Immunol 169:5424

    CAS  PubMed  Google Scholar 

  26. Peng P, Menoret A, Srivastava PK (1997) Purification of immunogenic heat shock protein 70-peptide complexes by ADP-affinity chromatography. J Immunol Methods 204:13

    CAS  PubMed  Google Scholar 

  27. Pilon M, Schekman R (1999) Protein translocation: how Hsp70 pulls it off. Cell 97:679

    CAS  PubMed  Google Scholar 

  28. Renkvist N, Castelli C, Robbins PF, Parmiani G (2001) A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother 50:3

    CAS  PubMed  Google Scholar 

  29. Rivoltini L, Castelli C, Carabba M, Mazzaferro V, Pilla L, Huber V, Coppa J, Gallino F, Scheibenbogen C, Squarcina P, Cova A, Camerini R, Lewis JJ, Srivastava PK, Parmiani G (2003) Cross-presentation of human tumor-derived heat shock protein gp96 associated peptides leads to in vitro activation and in vivo expansion of melanoma and colon carcinoma-specific T cells. J Immunol 171:3467

    Google Scholar 

  30. Schild H, Arnold-Schild D, Lammert E, Rammensee HG (1999) Stress proteins and immunity mediated by cytotoxic T lymphocytes. Curr Opin Immunol 11:109

    CAS  PubMed  Google Scholar 

  31. Schild H, Rammensee HG (2000) gp96--the immune system’s Swiss army knife. Nat Immunol 1:100

    Article  CAS  PubMed  Google Scholar 

  32. Serwold T, Gaw S, Shastri N (2001) ER aminopeptidases generate a unique pool of peptides for MHC class I molecules. Nat Immunol 2:644

    Article  CAS  PubMed  Google Scholar 

  33. Singh-Jasuja H, Scherer HU, Hilf N, Arnold-Schild D, Rammensee HG, Toes RE, Schild H (2000) The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur J Immunol 30:2211

    Article  CAS  Google Scholar 

  34. Singh-Jasuja H, Toes RE, Spee P, Munz C, Hilf N, Schoenberger SP, Ricciardi-Castagnoli P, Neefjes J, Rammensee HG, Arnold-Schild D, Schild H (2000) Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J Exp Med 191:1965

    CAS  PubMed  Google Scholar 

  35. Spee P, Neefjes J (1997) TAP-translocated peptides specifically bind proteins in the endoplasmic reticulum, including gp96, protein disulfide isomerase and calreticulin. Eur J Immunol 27:2441

    CAS  PubMed  Google Scholar 

  36. Srivastava P (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395

    Article  CAS  PubMed  Google Scholar 

  37. Srivastava PK, Udono H., Blanchere NE, Li Z (1994) Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics 39:93

    CAS  PubMed  Google Scholar 

  38. Suto R, Srivastava PK (1995) A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 69:1585

    Google Scholar 

  39. Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107

    Article  CAS  PubMed  Google Scholar 

  40. Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, Ahmad-Nejad P, Kirschning CJ, Da Costa C, Rammensee HG, Wagner H, Schild H (2002) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 277:20847

    CAS  PubMed  Google Scholar 

  41. Wassenberg JJ, Dezfulian C, Nicchitta CV (1999) Receptor mediated and fluid phase pathways for internalization of the ER Hsp90 chaperone GRP94 in murine macrophages. J Cell Sci 112:2167

    CAS  PubMed  Google Scholar 

  42. Wearsch PA, Nicchitta CV (1997) Interaction of endoplasmic reticulum chaperone GRP94 with peptide substrates is adenine nucleotide-independent. J Biol Chem 272:5152

    Article  CAS  PubMed  Google Scholar 

  43. Wearsch PA, Voglino L, Nicchitta CV (1998) Structural transitions accompanying the activation of peptide binding to the endoplasmic reticulum Hsp90 chaperone GRP94. Biochemistry 37:5709

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Sigma Tau (Rome) and Antigenics (New York). We thank Grazia Barp for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Parmiani.

Additional information

This work was presented at the first Cancer Immunology and Immunotherapy Summer School, 8–13 September 2003, Ionian Village, Bartholomeio, Peloponnese, Greece.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castelli, C., Rivoltini, L., Rini, F. et al. Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunol Immunother 53, 227–233 (2004). https://doi.org/10.1007/s00262-003-0481-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-003-0481-9

Keywords

Navigation