Skip to main content

Advertisement

Log in

The use of gene function to identify the rate-limiting steps controlling cell fate

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The size and complexity of the genomes of mammals in general, and humans in particular, is such that it will take many years to utilise this information to produce a genuine understanding of the control of cell behaviour. Since there are tens of thousands of genes to consider, the task of identifying those which play the most significant roles, biologically and medically, is both crucial and very demanding. Here we emphasise the importance of functional approaches to answering this question, i.e. the application of techniques which use the function of the gene itself in identifying the critical rate-limiting steps in biological processes. In this review, we use the functional analysis of one of the most important of these processes, the control of survival and apoptosis, to illustrate the power of a number of functional genomic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Farzaneh F, Cooper D (eds) (1995) The human genome: a functional analysis. Bios Scientific Publishers, Oxford

    Google Scholar 

  2. Stark GR, Gudkov AV (1999) Forward genetics in mammaliancells: functional approaches to gene discovery. Hum Mol Genet 8:1925

    Article  CAS  PubMed  Google Scholar 

  3. Williams GT (1994) Apoptosis in the immune system. J Pathol 173:1

    CAS  PubMed  Google Scholar 

  4. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456

    CAS  PubMed  Google Scholar 

  5. Hale AJ, Smith CA, Sutherland LC, Stoneman VEA., Longthorne VL, Culhane AC, Williams GT (1996) Apoptosis: molecular regulation of cell death. Eur J Biochem 236:1

    CAS  PubMed  Google Scholar 

  6. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770

    Article  CAS  PubMed  Google Scholar 

  7. Rathmell JC, Thompson CB (2002) Pathways of apoptosis in lymphocyte development, homeostasis and disease. Cell 109:S97

    CAS  PubMed  Google Scholar 

  8. Sutherland LC, Edwards SE, Cable HC, Poirier GG, Miller BA, Cooper CS, Williams GT (2000) LUCA-15-encoded sequence variants regulate CD95-mediated apoptosis. Oncogene 19:3774

    Article  CAS  PubMed  Google Scholar 

  9. Sutherland LC, Lerman M, Williams GT, Miller BA (2001) LUCA-15 suppresses CD95-mediated apoptosis in Jurkat T cells. Oncogene 20:2713.)

    Article  CAS  PubMed  Google Scholar 

  10. Mourtada-Maarabouni M, Sutherland LC, Williams GT (2002) Candidate tumour suppressor LUCA-15 can regulate multiple apoptotic pathways. Apoptosis 7:421–432

    Article  CAS  PubMed  Google Scholar 

  11. Mourtada-Maarabouni M, Sutherland LC, Meredith JM, Williams GT (2003) Simultaneous acceleration of the cell cycle and suppression of apoptosis by splice variant delta-6 of the candidate tumour suppressor LUCA-15/RBM5. Genes Cells 8:109–119

    Article  CAS  PubMed  Google Scholar 

  12. Williams GT, Smith CA (1993) Molecular regulation of apoptosis: genetic controls on cell death. Cell 74:777

    CAS  PubMed  Google Scholar 

  13. Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802

    Article  CAS  PubMed  Google Scholar 

  14. McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A, Peters TJ, Raja KB, Shirali S, Hediger MA, Farzaneh F, Simpson RJ (2001) Iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291:1755

    Article  CAS  PubMed  Google Scholar 

  15. McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Molecular Cell 5:299

    CAS  PubMed  Google Scholar 

  16. Darling D, Hughes C, Galea-Lauri J, Gäken J, Trayner ID, Kuiper M, Farzaneh F (2000) Low speed centrifugation of retroviral vectors absorbed to a particulate substrate: a highly effective means of enhancing retroviral titre. Gene Therapy 7:914

    Article  CAS  PubMed  Google Scholar 

  17. Hughes C, Galea-Lauri J, Farzaneh F, Darling D (2001) Streptavidin MagneSphere paramagnetic particles: a choice of three affinity based capture and magnetic concentration strategies for retroviral vectors. Mol Ther 3:623

    Article  CAS  PubMed  Google Scholar 

  18. Starr R, Willson TA, Viney EM, Murray LJL, Rayner JR, Jenkins BJ, Gonda TJ, Alexander WS, Metcalf D, Nicola NA, Hilton DJ (1997) A family of cytokine-inducible inhibitors of signalling. Nature 387:917

    Article  CAS  PubMed  Google Scholar 

  19. Rayner JR, Gonda TJ (1994) A simple and efficient procedure for generating stable expression libraries by cDNA cloning in a retroviral vector. Mol Cell Biol 14:880

    CAS  PubMed  Google Scholar 

  20. Hitoshi Y, Lorens J, Kitada SI, Fisher J, LaBarge M, Ring HZ, Francke U, Reed JC, Kinoshita S, Nolan GP (1998) Toso, a cell surface, specific regulator of Fas-induced apoptosis in T cells. Immunity 8:461

    CAS  PubMed  Google Scholar 

  21. Sun P, Dong P, Dai K, Hannon GJ, Beach D (1998) P53-independent role of MDM 2 in TGF-β1 resistance. Science 282:2270

    Article  CAS  PubMed  Google Scholar 

  22. Hannon GJ, Sun P, Carnero A, Xie LY, Maestro R, Conklin DS, Beach D (1999) MaRX: an approach to genetics in mammalian cells. Science 283:1129

    Article  CAS  PubMed  Google Scholar 

  23. Hudson JD, Shoaibi MA, Maestro R, Carnero A, Hannon GJ, Beach DH (1999) A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med 190:1375

    CAS  PubMed  Google Scholar 

  24. Maestro R, Tos APD, Hamamori Y, Krasnokutsky S, Sartorelli V, Kedes L, Doglioni C, Beach DH, Hannon GJ (1999) Twist is a potential oncogene that inhibits apoptosis. Genes Dev 13:2207

    Article  CAS  PubMed  Google Scholar 

  25. Carnero A, Hudson JD, Hannon GJ, Beach DH (2000) Loss-of-function genetics in mammalian cells: the p53 tumor suppressor model. Nucleic Acids Res 28:2234

    Article  CAS  PubMed  Google Scholar 

  26. Legerski R, Peterson C (1992) Expression cloning of a human DNA-repair gene involved in Xeroderma-Pigmentosum group-C. Nature 359:70

    Article  CAS  PubMed  Google Scholar 

  27. Kimchi A (1998) DAP genes: novel apoptotic genes isolated by a functional approach to gene cloning. Biochim Biophys Acta 1377:F13

    Article  CAS  PubMed  Google Scholar 

  28. Inbal B, Cohen O, PolakCharcon S, Kopolovic J, Vadai E, Eisenbach L, Kimchi A (1997) DAP kinase links the control of apoptosis to metastasis. Nature 390:180

    Article  CAS  PubMed  Google Scholar 

  29. Mourtada-Maarabouni M, Kirkham L, Jenkins B, Rayner J, Gonda TJ, Starr R, Trayner I, Farzaneh F, Williams GT (2003) Functional expression cloning reveals pro-apoptotic role for protein phosphatase 4. Cell Death Differ 10:1016

    Article  CAS  PubMed  Google Scholar 

  30. Roepe PD (2001) pH and multidrug resistance. Novartis Foundation Symposium 240:232

    Article  CAS  PubMed  Google Scholar 

  31. Putney LK, Denker SP, Barber DL (2002) The changing face of the Na+/H+ exchanger, NHE1: structure, regulation, and cellular actions. Annu Rev Pharmacol Toxicol 42:52

    Article  Google Scholar 

  32. Grosovsky AJ, Skandalis A, Hasegawa L, Walter BN (1993) Insertional inactivation of the tk locus in a human B lymphoblastoid cell line by a retroviral shuttle vector. Mutat Res Fundam Mol Mech Mutagen 289:297

    Article  CAS  Google Scholar 

  33. Levy LS, Lobelle-Rich PA, Overbaugh J (1993) Flvi-2, a target of retroviral insertional mutagenesis in feline thymic lymkphosarcomas, encodes bmi-1. Oncogene 8:1833

    CAS  PubMed  Google Scholar 

  34. Wolff L (1996) Myb-induced transformation. Crit Rev Oncog 7:245

    CAS  PubMed  Google Scholar 

  35. Gaiano N, Amsterdam A, Kawakami K, Allende M, Becker T, Hopkins N (1996) Insertional mutagenesis and rapid cloning of essential genes in zebrafish. Nature 383:829

    Article  CAS  PubMed  Google Scholar 

  36. Lu SJ, Man S, Bani MR, Adachi D, Hawley RG, Kerbel RS, Ben-David Y (1995) Retroviral insertional mutagenesis as a strategy for the identification of genes associated with cis-diamminedichloroplatinum(II) resistance. Cancer Res 55:1139

    CAS  PubMed  Google Scholar 

  37. Just U, Boettiger D, Kan O, Dexter TM, Spooncer E (2000) Insertional mutagenesis as a route to identifying genes involved in self renewal of haemopoietic stem cells. Curr Top Microbiol Immunol 251:27

    CAS  PubMed  Google Scholar 

  38. Li J et al (1999) Leukaemia disease genes: large-scale cloning & pathway predictions. Nat Genet 23:348–353

    CAS  PubMed  Google Scholar 

  39. Lund AH et al (2002) Genome-wide retroviral insert tagging of genes involved in cancer in Cdkn2a-deficient mice. Nat Genet 32:160–165

    Article  CAS  PubMed  Google Scholar 

  40. Mikkers H, Allen J, Knipscheer P, Romeyn L, Hart A, Vink E, Berns A (2002) High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat Genet 32:153–159

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki T et al (2002) New genes involved in cancer identified by retroviral tagging. Nat Genet 32:166–174

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwyn T. Williams.

Additional information

This work was presented at the first Cancer Immunology and Immunotherapy Summer School, 8–13 September 2003, Ionian Village, Bartholomeio, Peloponnese, Greece.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, G.T., Farzaneh, F. The use of gene function to identify the rate-limiting steps controlling cell fate. Cancer Immunol Immunother 53, 160–165 (2004). https://doi.org/10.1007/s00262-003-0476-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-003-0476-6

Keywords

Navigation