Cancer Immunology, Immunotherapy

, Volume 53, Issue 5, pp 431–438 | Cite as

Serological cloning of cancer/testis antigens expressed in prostate cancer using cDNA phage surface display

  • Alexander FossåEmail author
  • Lene Alsøe
  • Reto Crameri
  • Steinar Funderud
  • Gustav Gaudernack
  • Erlend B. Smeland
Original Article


Serological cloning of tumor-associated antigens (TAAs) using patient autoantibodies and tumor cDNA expression libraries (SEREX) has identified a wide array of tumor proteins eliciting B-cell responses in patients. However, alternative cloning strategies with the possibility of high throughput analysis of patient sera and tumor libraries may be of interest. We explored the pJuFo phage surface display system, allowing display of recombinant tumor proteins on the surface of M13 filamentous phage, for cloning of TAAs in prostate cancer (PC). Control experiments established that after a few rounds of selection on immobilized specific IgG, a high degree of enrichment of seroreactive clones was achieved. With an increasing number of selection rounds, a higher yield of positive clones was offset by an apparent loss of diversity in the repertoire of selected clones. Using autologous patient serum IgG in a combined biopanning and immunoscreening approach, we identified 13 different TAAs. Three of these (NY-ESO-1, Lage-1, and Xage-1) were known members of the cancer/testis family of TAAs, and one other protein had previously been isolated by SEREX in cancer types other than PC. Specific IgG responses against NY-ESO-1 were found in sera from 4/20 patients with hormone refractory PC, against Lage-1 in 3/20, and Xage-1 in 1/20. No reactivity against the remaining proteins was detected in other PC patients, and none of the TAAs reacted with serum from healthy subjects. The results demonstrate that phage surface display combined with postselection immunoscreening is suitable for cloning a diverse repertoire of TAAs from tumor tissue cDNA libraries. Furthermore, candidate TAAs for vaccine development of PC were identified.


Serological cloning Cancer/testis antigens Prostate cancer 


  1. 1.
    Chen YT, Scanlan MJ, Sahin U, Tureci O, Gure AO, Tsang S, Williamson B, Stockert E, Pfreundschuh M, Old LJ (1997) A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 94:1914PubMedGoogle Scholar
  2. 2.
    Crameri R, Jaussi R, Menz G, Blaser K (1994) Display of expression products of cDNA libraries on phage surfaces. A versatile screening system for selective isolation of genes by specific gene-product/ligand interaction. Eur J Biochem 226:53PubMedGoogle Scholar
  3. 3.
    Danner S, Belasco JG (2001) T7 phage display: a novel genetic selection system for cloning RNA-binding proteins from cDNA libraries. Proc Natl Acad Sci USA 98:12954CrossRefPubMedGoogle Scholar
  4. 4.
    Dente L, Cesareni G, Micheli G, Felici F, Folgori A, Luzzago A, Monaci P, Nicosia A, Delmastro P (1994) Monoclonal antibodies that recognise filamentous phage: tools for phage display technology. Gene 148:7CrossRefPubMedGoogle Scholar
  5. 5.
    Disis ML, Pupa SM, Gralow JR, Dittadi R, Menard S, Cheever MA (1997) High-titer HER-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol 15:3363PubMedGoogle Scholar
  6. 6.
    Fossa A, Siebert R, Aasheim HC, Maelandsmo GM, Berner A, Fossa SD, Paus E, Smeland EB, Gaudernack G (2000) Identification of nucleolar protein No55 as a tumour-associated autoantigen in patients with prostate cancer. Br J Cancer 83:743Google Scholar
  7. 7.
    Hufton SE, Moerkerk P, de Bruine A, Arends JW, Hoogenboom HR (1998) Serological antigen selection of phage displayed colorectal tumour cDNA libraries. Biochem Soc Trans 26:5Google Scholar
  8. 8.
    Hufton SE, Moerkerk PT, Meulemans EV, de Bruine A, Arends JW, Hoogenboom HR (1999) Phage display of cDNA repertoires: the pVI display system and its applications for the selection of immunogenic ligands. J Immunol Methods 231:39CrossRefPubMedGoogle Scholar
  9. 9.
    Jacobsson K, Frykberg L (2001) Shotgun phage display cloning. Comb Chem High Throughput Screen 4:135PubMedGoogle Scholar
  10. 10.
    Jager E, Gnjatic S, Nagata Y, Stockert E, Jager D, Karbach J, Neumann A, Rieckenberg J, Chen YT, Ritter G, Hoffman E, Arand M, Old LJ, Knuth A (2000) Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc Natl Acad Sci USA 97:12198PubMedGoogle Scholar
  11. 11.
    Jespers LS, Messens JH, De Keyser A, Eeckhout D, Van dB, I, Gansemans YG, Lauwereys MJ, Vlasuk GP, Stanssens PE (1995) Surface expression and ligand-based selection of cDNAs fused to filamentous phage gene VI. Biotechnology (NY) 13:378Google Scholar
  12. 12.
    Kitaura Y, Matsumoto S, Satoh H, Hitomi K, Maki M (2001) Peflin and ALG-2, members of the penta-EF-hand protein family, form a heterodimer that dissociates in a Ca2+-dependent manner. J Biol Chem 276:14053PubMedGoogle Scholar
  13. 13.
    Kodzius R, Rhyner C, Konthur Z, Buczek D, Lehrach H, Walter G, Crameri R (2003) Rapid identification of allergen-encoding cDNA clones by phage display and high-density arrays. Comb Chem High Throughput Screen 6:147PubMedGoogle Scholar
  14. 14.
    Lethe B, Lucas S, Michaux L, De Smet C, Godelaine D, Serrano A, De Plaen E, Boon T (1998) LAGE-1, a new gene with tumor specificity. Int J Cancer 76:903PubMedGoogle Scholar
  15. 15.
    Levitan B (1998) Stochastic modeling and optimization of phage display. J Mol Biol 277:893CrossRefPubMedGoogle Scholar
  16. 16.
    Liu XF, Helman LJ, Yeung C, Bera TK, Lee B, Pastan I (2000) XAGE-1, a new gene that is frequently expressed in Ewing’s sarcoma. Cancer Res 60:4752PubMedGoogle Scholar
  17. 17.
    McLennan AG (1999) The MutT motif family of nucleotide phosphohydrolases in man and human pathogens (review). Int J Mol Med 4:79PubMedGoogle Scholar
  18. 18.
    Nishikawa H, Tanida K, Ikeda H, Sakakura M, Miyahara Y, Aota T, Mukai K, Watanabe M, Kuribayashi K, Old LJ, Shiku H (2001) Role of SEREX-defined immunogenic wild-type cellular molecules in the development of tumor-specific immunity. Proc Natl Acad Sci USA 98:14571CrossRefPubMedGoogle Scholar
  19. 19.
    Niwa M, Maruyama H, Fujimoto T, Dohi K, Maruyama IN (2000) Affinity selection of cDNA libraries by lambda phage surface display. Gene 256:229CrossRefPubMedGoogle Scholar
  20. 20.
    Nupponen NN, Kakkola L, Koivisto P, Visakorpi T (1998) Genetic alterations in hormone-refractory recurrent prostate carcinomas. Am J Pathol 153:141PubMedGoogle Scholar
  21. 21.
    Pardoll DM (2002) Spinning molecular immunology into successful immunotherapy. Nat Rev Immunol 2:227CrossRefPubMedGoogle Scholar
  22. 22.
    Parkin DM, Bray FI, Devesa SS (2001) Cancer burden in the year 2000: the global picture. Eur J Cancer 37[Suppl 8]:4Google Scholar
  23. 23.
    Pfreundschuh M (2000) Exploitation of the B cell repertoire for the identification of human tumor antigens. Cancer Chemother Pharmacol 46[Suppl]:3Google Scholar
  24. 24.
    Rini BI, Small EJ (2001) Immunotherapy for prostate cancer. Curr Oncol Rep 3:418PubMedGoogle Scholar
  25. 25.
    Rulli A, Carli L, Romani R, Baroni T, Giovannini E, Rosi G, Talesa V (2001) Expression of glyoxalase I and II in normal and breast cancer tissues. Breast Cancer Res Treat 66:67CrossRefPubMedGoogle Scholar
  26. 26.
    Saffran DC, Reiter RE, Jakobovits A, Witte ON (1999) Target antigens for prostate cancer immunotherapy. Cancer Metastasis Rev 18:437CrossRefPubMedGoogle Scholar
  27. 27.
    Sahin U, Tureci O, Schmitt H, Cochlovius B, Johannes T, Schmits R, Stenner F, Luo G, Schobert I, Pfreundschuh M (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 92:11810PubMedGoogle Scholar
  28. 28.
    Samadi AA, Fullerton SA, Tortorelis DG, Johnson GB, Davidson SD, Choudhury MS, Mallouh C, Tazaki H, Konno S (2001) Glyoxalase I phenotype as a potential risk factor for prostate carcinoma. Urology 57:183CrossRefPubMedGoogle Scholar
  29. 29.
    Sambrook J, Fritsch EF, Maniatis T (1989) Screening expression libraries with antibodies and oligonucleotides: In: Nolan C (ed) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, p 12.24Google Scholar
  30. 30.
    Sandblom G, Varenhorst E (2001) Incidence rate and management of prostate carcinoma. Biomed Pharmacother 55:135CrossRefPubMedGoogle Scholar
  31. 31.
    Santini C, Brennan D, Mennuni C, Hoess RH, Nicosia A, Cortese R, Luzzago A (1998) Efficient display of an HCV cDNA expression library as C-terminal fusion to the capsid protein D of bacteriophage lambda. J Mol Biol 282:125CrossRefPubMedGoogle Scholar
  32. 32.
    Schultz-Thater E, Noppen C, Gudat F, Durmuller U, Zajac P, Kocher T, Heberer M, Spagnoli GC (2000) NY-ESO-1 tumour associated antigen is a cytoplasmic protein detectable by specific monoclonal antibodies in cell lines and clinical specimens. Br J Cancer 83:204Google Scholar
  33. 33.
    Sharkey EM, O’Neill HB, Kavarana MJ, Wang H, Creighton DJ, Sentz DL, Eiseman JL (2000) Pharmacokinetics and antitumor properties in tumor-bearing mice of an enediol analogue inhibitor of glyoxalase I. Cancer Chemother Pharmacol 46:156CrossRefPubMedGoogle Scholar
  34. 34.
    Sioud M, Hansen MH (2001) Profiling the immune response in patients with breast cancer by phage-displayed cDNA libraries. Eur J Immunol 31:716CrossRefPubMedGoogle Scholar
  35. 35.
    Somers VA, Brandwijk RJ, Joosten B, Moerkerk PT, Arends JW, Menheere P, Pieterse WO, Claessen A, Scheper RJ, Hoogenboom HR, Hufton SE (2002) A panel of candidate tumor antigens in colorectal cancer revealed by the serological selection of a phage displayed cDNA expression library. J Immunol 169:2772PubMedGoogle Scholar
  36. 36.
    Suarez BK, Lin J, Burmester JK, Broman KW, Weber JL, Banerjee TK, Goddard KA, Witte JS, Elston RC, Catalona WJ (2000) A genome screen of multiplex sibships with prostate cancer. Am J Hum Genet 66:933PubMedGoogle Scholar
  37. 37.
    Thornalley PJ (1996) Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification--a role in pathogenesis and antiproliferative chemotherapy. Gen Pharmacol 27:565PubMedGoogle Scholar
  38. 38.
    van Baren N, Brasseur F, Godelaine D, Hames G, Ferrant A, Lehmann F, Andre M, Ravoet C, Doyen C, Spagnoli GC, Bakkus M, Thielemans K, Boon T (1999) Genes encoding tumor-specific antigens are expressed in human myeloma cells. Blood 94:1156PubMedGoogle Scholar
  39. 39.
    Wang E, Phan GQ, Marincola FM (2001) T-cell-directed cancer vaccines: the melanoma model. Expert Opin Biol Ther 1:277PubMedGoogle Scholar
  40. 40.
    Wang T, Fan L, Watanabe Y, McNeill P, Fanger GR, Persing DH, Reed SG (2001) L552S, an alternatively spliced isoform of XAGE-1, is over-expressed in lung adenocarcinoma. Oncogene 20:7699CrossRefPubMedGoogle Scholar
  41. 41.
    Zendman AJ, Van Kraats AA, den Hollander AI, Weidle UH, Ruiter DJ, Van Muijen GN (2002) Characterization of XAGE-1b, a short major transcript of cancer/testis-associated gene XAGE-1, induced in melanoma metastasis. Int J Cancer 97:195CrossRefPubMedGoogle Scholar
  42. 42.
    Zhou Y, Toth M, Hamman MS, Monahan SJ, Lodge PA, Boynton AL, Salgaller ML (2002) Serological cloning of PARIS-1: a new TBC domain-containing, immunogenic tumor antigen from a prostate cancer cell line. Biochem Biophys Res Commun 290:830CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Alexander Fosså
    • 1
    Email author
  • Lene Alsøe
    • 1
  • Reto Crameri
    • 2
  • Steinar Funderud
    • 1
  • Gustav Gaudernack
    • 1
  • Erlend B. Smeland
    • 1
  1. 1.Department of ImmunologyNorwegian Radium HospitalOsloNorway
  2. 2.Swiss Institute of Asthma and Allergy ResearchDavosSwitzerland

Personalised recommendations