Skip to main content

Advertisement

Log in

Serum-free generation of antigen presenting cells from acute myeloid leukaemic blasts for active specific immunisation

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose.

Immunotherapy holds promise as a new strategy for the eradication of residual cells in acute myeloid leukaemia (AML). Leukaemic antigen presenting cells (APCs) combining optimal antigen presentation and tumour antigenicity could be used as potent T cell activators. For clinical purposes it is desirable to culture APCs under serum-free conditions. Therefore, we compared morphological, immunophenotypical and functional outcome of the serum-free culture of AML-APCs to their serum-enriched culture.

Methods.

AML blasts (n=19) were cultured in the presence of either a cytokine mix or calcium ionophore (CI) for 14 and 2 days, respectively, in FCS-containing medium (FCS), StemSpan serum-free medium (SP) and CellGro serum-free medium (CG). After culture relative yields were calculated and immunophenotypic analysis of APC markers was performed. The mixed leukocyte reaction (MLR) was used to determine T cell stimulating capacity.

Results.

Serum-free culture of AML-APCs resulted in comparable morphology, relative yields and immunophenotype to serum-enriched culture. By comparing both serum-free media we observed a trend towards a more mature phenotype of CI-cultured AML-APCs in SP. MLR showed that serum-free cultured cells have equal T cell stimulatory capacity in comparison with serum-enriched culture.

Conclusion.

These data show that the serum-free culture of AML-APCs is feasible and that these APCs are comparable to serum-enriched cultured AML-APCs with regard to morphological, immunophenotypical and functional characteristics. These AML-APCs are suitable for the development of active specific immunisation protocols which meet the criteria for good clinical practise (GCP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A
Fig. 3A.

Similar content being viewed by others

References

  1. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245

    CAS  PubMed  Google Scholar 

  2. Boczkowski D, Nair SK, Nam JH, Lyerly HK, Gilboa E (2000) Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res 60:1028

    CAS  PubMed  Google Scholar 

  3. Bruserud Ø, Frostad S, Foss B (1999) In vitro culture of acute myelogenous leukemia blasts: a comparison of four different culture media. J Hematother 8:63

    Article  CAS  PubMed  Google Scholar 

  4. Bruserud Ø, Gjertsen BT, Volkman HL von (2000) In vitro culture of human acute myelogenous leukemia (AML) cells in serum-free media: studies of native AML blasts and AML cell lines. J Hematother Stem Cell Res 9:923

    Article  CAS  PubMed  Google Scholar 

  5. Charbonnier A, Gaugler B, Sainty D, Lafage-Pochitaloff M, Olive D (1999) Human acute myeloblastic leukemia cells differentiate in vitro into mature dendritic cells and induce the differentiation of cytotoxic T cells against autologous leukemias. Eur J Immunol 29:2567

    Article  CAS  PubMed  Google Scholar 

  6. Choudhury A, Gajewski JL, Liang JC, Popat U, Claxton DF, Kliche KO, Andreeff M, Champlin RE (1997) Use of leukemic dendritic cells for the generation of antileukemic cellular cytotoxicity against Philadelphia chromosome-positive chronic myelogenous leukemia. Blood 89:1133

    CAS  PubMed  Google Scholar 

  7. Cignetti A, Bryant E, Allione B, Vitale A, Foa R, Cheever MA (1999) CD34(+) acute myeloid and lymphoid leukemic blasts can be induced to differentiate into dendritic cells. Blood 94:2048

    CAS  PubMed  Google Scholar 

  8. Hart DN (1997) Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90:3245

    PubMed  Google Scholar 

  9. Heiser A, Coleman D, Dannull J, Yancey D, Maurice MA, Lallas CD, Dahm P, Niedzwiecki D, Gilboa E, Vieweg J (2002) Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 109:409

    Article  CAS  PubMed  Google Scholar 

  10. Koski GK, Schwartz GN, Weng DE, Gress RE, Engels FH, Tsokos M, Czerniecki BJ, Cohen PA (1999) Calcium ionophore-treated myeloid cells acquire many dendritic cell characteristics independent of prior differentiation state, transformation status, or sensitivity to biologic agents. Blood 94:1359

    CAS  PubMed  Google Scholar 

  11. Koski GK, Lyakh LA, Rice NR (2001) Rapid lipopolysaccharide-induced differentiation of CD14(+) monocytes into CD83(+) dendritic cells is modulated under serum-free conditions by exogenously added IFN-gamma and endogenously produced IL-10. Eur J Immunol 31:3773

    Article  CAS  PubMed  Google Scholar 

  12. Kugler A, Stuhler G, Walden P et al. (2000) Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat Med 6:332

    CAS  PubMed  Google Scholar 

  13. Löwenberg B, Boogaerts MA, Daenen SM et al. (1997) Value of different modalities of granulocyte-macrophage colony-stimulating factor applied during or after induction therapy of acute myeloid leukemia. J Clin Oncol 15:3496

    PubMed  Google Scholar 

  14. Löwenberg B, Downing JR, Burnett A (1999) Acute myeloid leukemia. N Engl J Med 341:1051

    CAS  PubMed  Google Scholar 

  15. Mackensen A, Drager R, Schlesier M, Mertelsmann R, Lindemann A (2000) Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells. Cancer Immunol Immunother 49:152

    Article  CAS  PubMed  Google Scholar 

  16. Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255

    CAS  PubMed  Google Scholar 

  17. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328

    CAS  PubMed  Google Scholar 

  18. Ossenkoppele GJ, Stam AGM, Westers TM, Gruijl TD de, Janssen JJWM, Loosdrecht AA van de, Scheper RJ (2003) Vaccination of chronic myeloid leukemia patients with autologous in vitro cultured leukemic dendritic cells. Leukemia (in press)

    Google Scholar 

  19. Panoskaltsis N, Belanger TJ, Liesveld JL, Abboud CN (2002) Optimal cytokine stimulation for the enhanced generation of leukemic dendritic cells in short-term culture. Leuk Res 26:191

    Article  CAS  PubMed  Google Scholar 

  20. Pardoll DM (1998) Cancer vaccines. Nat Med 4:525

    CAS  PubMed  Google Scholar 

  21. Porgador A,Gilboa E (1995) Bone marrow-generated dendritic cells pulsed with a class I-restricted peptide are potent inducers of cytotoxic T lymphocytes. J Exp Med 182:255

    CAS  PubMed  Google Scholar 

  22. Ramadan G, Schmidt RE, Schubert J (2001) In vitro generation of human CD86+ dendritic cells from CD34+ haematopoietic progenitors by PMA and in serum-free medium. Clin Exp Immunol 125:237

    Article  CAS  PubMed  Google Scholar 

  23. Renkvist N, Castelli C, Robbins PF, Parmiani G (2001) A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother 50:3

    CAS  PubMed  Google Scholar 

  24. Robinson SP, English N, Jaju R, Kearney L, Knight SC, Reid CD (1998) The in-vitro generation of dendritic cells from blast cells in acute leukaemia. Br J Haematol 103:763

    CAS  PubMed  Google Scholar 

  25. Schuurhuis GJ, Muijen MM, Oberink JW, Boer F de, Ossenkoppele GJ, Broxterman HJ (2001) Large populations of non-clonogenic early apoptotic CD34-positive cells are present in frozen-thawed peripheral blood stem cell transplants. Bone Marrow Transplant 27:487

    CAS  PubMed  Google Scholar 

  26. Tarte K, Fiol G, Rossi JF, Klein B (2000) Extensive characterization of dendritic cells generated in serum-free conditions: regulation of soluble antigen uptake, apoptotic tumor cell phagocytosis, chemotaxis and T cell activation during maturation in vitro. Leukemia 14:2182

    Article  CAS  PubMed  Google Scholar 

  27. Waclavicek M, Berer A, Oehler L, Stockl J, Schloegl E, Majdic O, Knapp W (2001) Calcium ionophore: a single reagent for the differentiation of primary human acute myelogenous leukaemia cells towards dendritic cells. Br J Haematol 114:466

    CAS  PubMed  Google Scholar 

  28. Westers TM, Stam AGM, Scheper RJ, Regelink JC, Nieuwint AWM, Schuurhuis GJ, Loosdrecht AA van de, Ossenkoppele GJ (2001) A23187/IL-4 cultured leukemic dendritic cells stimulate autologous T cell mediated apoptosis of acute myeloid leukemic blasts (Abstract). Blood 98:121a

    Google Scholar 

  29. Westers TM, Stam AGM, Scheper RJ, Regelink JC, Nieuwint AWM, Schuurhuis GJ, Loosdrecht AA van de, Ossenkoppele GJ (2002) Rapid generation of antigen presenting cells from leukaemic blasts in acute myeloid leukaemia. Cancer Immunol Immunother 52:17

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjan A. van de Loosdrecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houtenbos, I., Westers, T.M., Stam, A.G.M. et al. Serum-free generation of antigen presenting cells from acute myeloid leukaemic blasts for active specific immunisation. Cancer Immunol Immunother 52, 455–462 (2003). https://doi.org/10.1007/s00262-003-0389-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-003-0389-4

Keywords

Navigation