Skip to main content

Advertisement

Log in

Squamous cell carcinoma cells differentially stimulate NK cell effector functions: the role of IL-18

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Tumor cells stimulate natural killer (NK) cell effector functions, but the regulation of cytokine secretion and cytolysis is incompletely understood. We tested whether oral and pharyngeal squamous cell carcinoma cell lines differentially stimulated NK cell interferon-γ (IFN-γ) secretion and cytolysis using a clone of the NK-92-transformed human NK cell line, NK92.35. SCC-4 and SCC-25 cells, but not FaDu or Cal 27 cells, stimulated robust NK92.35 IFN-γ secretion. All four carcinoma cell lines were lysed by NK92.35 cells. These findings indicate that carcinoma cells differentially stimulate NK cell IFN-γ secretion and cytolysis. In Transwell experiments, a combination of SCC-4 or SCC-25 cell soluble factors and contact with FaDu cells synergistically stimulated NK92.35 cell IFN-γ secretion. Stimulatory SCC-4 cells constitutively secreted IL-18, a cytokine that potently augments IFN-γ secretion by T cells and NK cells. In contrast, poorly stimulatory FaDu cells produced little or no IL-18, but synergized with recombinant IL-18 to stimulate NK92.35 IFN-γ secretion. mAb to IL-18 or IL-18 receptor diminished SCC-4-stimulated IFN-γ secretion by NK92.35 cells and by nontransformed NK cells. Thus, IL-18 was necessary for optimal carcinoma stimulation of NK cell IFN-γ secretion. In vivo, oral and upper aerodigestive tract epithelia and carcinomas produced IL-18, but one squamous cell carcinoma had heterogeneous IL-18 expression. Thus IL-18 production can account for squamous cell carcinoma differential stimulation of NK cell effector functions in vitro and may be important for stimulation of NK cells in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2A, B.
Fig. 3.
Fig. 4.
Fig. 5A–C.
Fig. 6.
Fig. 7A, B.
Fig. 8A–D.

Similar content being viewed by others

Abbreviations

A-NK:

IL-2-activated human NK cell

IFN-γ:

Interferon-γ

KIR:

Killer immunoglobulin-like receptor

IL:

Interleukin

mAb:

Monoclonal antibody

MHC:

Major histocompatibility complex

NK:

Natural killer

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

References

  1. Akira S (2000) The role of IL-18 in innate immunity. Curr Opin Immunol 12:59

    Article  CAS  PubMed  Google Scholar 

  2. Ballas ZK, Turner JM, Turner DA, Goetzman EA, Kemp JD (1990) A patient with simultaneous absence of "classical" natural killer cells (CD3−, CD16+, and NKH1+) and expansion of CD3+, CD4−, CD8−, NKH1+ subset. J Allergy Clin Immunol 85:453

    CAS  PubMed  Google Scholar 

  3. Billiau A (1996) Interferon-gamma: biology and role in pathogenesis. Adv Immunol 62:61

    CAS  PubMed  Google Scholar 

  4. Bohn E, Sing A, Zumbihl R, Bielfeldt C, Okamura H, Kurimoto M, Heesemann J, Autenrieth IB (1998) IL-18 (IFN-gamma-inducing factor) regulates early cytokine production in, and promotes resolution of, bacterial infection in mice. J Immunol 160:299

    CAS  PubMed  Google Scholar 

  5. Chikamatsu K, Reichert TE, Kashii Y, Saito T, Kawashiri S, Yamamoto E, Whiteside TL (1999) Immunotherapy with effector cells and IL-2 of lymph node metastases of human squamous-cell carcinoma of the head and neck established in nude mice. Int J Cancer 82:532

    Article  CAS  PubMed  Google Scholar 

  6. Cho D, Song H, Kim YM, Houh D, Hur DY, Park H, Yoon D, Pyun KH, Lee WJ, Kurimoto M, Kim YB, Kim YS, Choi I (2000) Endogenous interleukin-18 modulates immune escape of murine melanoma cells by regulating the expression of Fas ligand and reactive oxygen intermediates. Cancer Res 60:2703

    CAS  PubMed  Google Scholar 

  7. Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633

    CAS  PubMed  Google Scholar 

  8. Dalbeth N, Callan MF (2002) A subset of natural killer cells is greatly expanded within inflamed joints. Arthritis Rheum 46:1763

    Article  PubMed  Google Scholar 

  9. Gong J-H, Maki G, Klingemann H-G (1994) Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 8:652

    CAS  PubMed  Google Scholar 

  10. Harriman GR (1991) Measurement of mouse and human interleukin 5. In: Coligan JE, Kruisbeek AM, Margulies DH, Shevach EM, Strober W (eds) Current protocols in immunology, vol 1. Wiley, New York, p 6.5.1

  11. Hashimoto W, Osaki T, Okamura H, Robbins PD, Kurimoto M, Nagata S, Lotze MT, Tahara H (1999) Differential antitumor effects of administration of recombinant IL-18 or recombinant IL-12 are mediated primarily by Fas-Fas ligand- and perforin-induced tumor apoptosis, respectively. J Immunol 163:583

    CAS  PubMed  Google Scholar 

  12. Hyodo Y, Matsui K, Hayashi N, Tsutsui H, Kashiwamura S, Yamauchi H, Hiroishi K, Takeda K, Tagawa Y, Iwakura Y, Kayagaki N, Kurimoto M, Okamura H, Hada T, Yagita H, Akira S, Nakanishi K, Higashino K (1999) IL-18 up-regulates perforin-mediated NK activity without increasing perforin messenger RNA expression by binding to constitutively expressed IL-18 receptor. J Immunol 162:1662

    CAS  PubMed  Google Scholar 

  13. Jiang K, Zhong B, Gilvary DL, Corliss BC, Hong-Geller E, Wei S, Djeu JY (2000) Pivotal role of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer cells. Nat Immunol 1:419

    Article  CAS  PubMed  Google Scholar 

  14. Kalina U, Kauschat D, Koyama N, Nuernberger H, Ballas K, Koschmieder S, Bug G, Hofmann WK, Hoelzer D, Ottmann OG (2000) IL-18 activates STAT3 in the natural killer cell line 92, augments cytotoxic activity, and mediates IFN-γ production by the stress kinase p38 and by the extracellular regulated kinases p44erk-1 and p42erk-21. J Immunol 165:1307

    CAS  PubMed  Google Scholar 

  15. Kämpfer H, Kalina U, Mühl H, Pfeilschifter J, Frank S (1999) Counterregulation of interleukin-18 mRNA and protein expression during cutaneous wound repair in mice. J Invest Dermatol 113:369

    Google Scholar 

  16. Kataoka T, Shinohara N, Takayama H, Takaku K, Kondo S, Yonehara S, Nagai K (1996) Concanamycin A, a powerful tool for characterization and estimation of contribution of perforin- and Fas-based lytic pathways in cell-mediated cytotoxicity. J Immunol 156:3678

    CAS  PubMed  Google Scholar 

  17. Kayagaki N, Yamaguchi N, Nakayama M, Kawasaki A, Akiba H, Okumura K, Yagita H (1999) Involvement of TNF-related apoptosis-inducing ligand in human CD4+ T cell-mediated cytotoxicity. J Immunol 162:2639

    CAS  PubMed  Google Scholar 

  18. Kim S, Iizuka K, Aguila HL, Weissman IL, Yokoyama WM (2000) In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc Natl Acad Sci U S A 97:2731

    Article  CAS  PubMed  Google Scholar 

  19. Kurago ZB, Lutz CT, Smith KD, Colonna M (1998) NK cell natural cytotoxicity and IFN-γ production are not always coordinately regulated: engagement of DX9 KIR+ NK cells by HLA-B7 variants and target cells. J Immunol 160:1573

    CAS  PubMed  Google Scholar 

  20. Landis SH, Murray T, Bolden S, Wingo PA (1998) Cancer statistics, 1998. CA Cancer J Clin 48:6

    CAS  PubMed  Google Scholar 

  21. Lippman SM, Hong WK (1989) Second malignant tumors in head and neck squamous cell carcinoma: the overshadowing threat for patients with early-stage disease. Int J Radiat Oncol Biol Phys 17:691

    CAS  PubMed  Google Scholar 

  22. Long EO (1999) Regulation of immune responses through inhibitory receptors. Annu Rev Immunol 17:875

    PubMed  Google Scholar 

  23. Lutz CT, Kurago ZB (1999) Human leukocyte antigen class I expression on squamous cell carcinoma cells regulates natural killer cell activity. Cancer Res 59:5793

    CAS  PubMed  Google Scholar 

  24. Naik SM, Cannon G, Burbach GJ, Singh SR, Swerlick RA, Wilcox JN, Ansel JC, Caughman SW (1999) Human keratinocytes constitutively express interleukin-18 and secrete biologically active interleukin-18 after treatment with pro-inflammatory mediators and dinitrochlorobenzene. J Invest Dermatol 113:766

    CAS  PubMed  Google Scholar 

  25. Pagès F, Berger A, Henglein B, Piqueras B, Danel C, Zinzindohoue F, Thiounn N, Cugnenc PH, Fridman WH (1999) Modulation of interleukin-18 expression in human colon carcinoma: consequences for tumor immune surveillance. Int J Cancer 84:326

    Article  PubMed  Google Scholar 

  26. Peritt D, Robertson S, Gri G, Showe L, Aste-Amezaga M, Trinchieri G (1998) Differentiation of human NK cells into NK1 and NK2 subsets. J Immunol 161:5821

    CAS  PubMed  Google Scholar 

  27. Rabinowich H, Vitolo D, Altarac S, Herberman RB, Whiteside TL (1992) Role of cytokines in the adoptive immunotherapy of an experimental model of human head and neck cancer by human IL-2-activated natural killer cells. J Immunol 149:340

    CAS  PubMed  Google Scholar 

  28. Rajagopalan S, Long EO (1999) A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J Exp Med 189:1093

    Article  CAS  PubMed  Google Scholar 

  29. Rajagopalan S, Fu J, Long EO (2001) Cutting edge: induction of IFN-γ production but not cytotoxicity by the killer cell Ig-like receptor KIR2DL4 (CD158d) in resting NK cells. J Immunol 167:1877

    CAS  PubMed  Google Scholar 

  30. Rossi D, Zlotnik A (2000) The biology of chemokines and their receptors. Annu Rev Immunol 18:217

    CAS  PubMed  Google Scholar 

  31. Sacchi M, Vitolo D, Sedlmayr P, Rabinowich H, Johnson JT, Herberman RB, Whiteside TL (1991) Induction of tumor regression in experimental model of human head and neck cancer by human A-LAK cells and IL-2. Int J Cancer 47:784

    CAS  PubMed  Google Scholar 

  32. Schantz SP, Ordonez NG (1991) Quantitation of natural killer cell function and risk of metastatic poorly differentiated head and neck cancer. Nat Immun Cell Growth Regul 10:278

    CAS  PubMed  Google Scholar 

  33. Sgadari C, Angiolillo AL, Tosato G (1996) Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood 87:3877

    CAS  PubMed  Google Scholar 

  34. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107

    CAS  PubMed  Google Scholar 

  35. Stoll S, Muller G, Kurimoto M, Saloga J, Tanimoto T, Yamauchi H, Okamura H, Knop J, Enk AH (1997) Production of IL-18 (IFN-gamma-inducing factor) messenger RNA and functional protein by murine keratinocytes. J Immunol 159:298

    CAS  PubMed  Google Scholar 

  36. Sugawara S, Uehara A, Nochi T, Yamaguchi T, Ueda H, Sugiyama A, Hanzawa K, Kumagai K, Okamura H, Takada H (2001) Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells. J Immunol 167:6568

    CAS  PubMed  Google Scholar 

  37. Takeuchi M, Nishizaki Y, Sano O, Ohta T, Ikeda M, Kurimoto M (1997) Immunohistochemical and immuno-electron-microscopic detection of interferon-γ-inducing factor ("interleukin-18") in mouse intestinal epithelial cells. Cell Tissue Res 289:499

    Article  CAS  PubMed  Google Scholar 

  38. Tay CH, Welsh RM (1997) Distinct organ-dependent mechanisms for the control of murine cytomegalovirus infection by natural killer cells. J Virol 71:267

    CAS  PubMed  Google Scholar 

  39. Vitolo D, Ciocci L, Ferrauti P, Tiboni F, Cicerone E, Gallo A, De Vincentiis M, Baroni CD (2000) Interleukin-12-related cytokine gene expression in carcinomas of the breast, lung, and larynx: a study at tissue level. Cancer Detect Prev 24:422

    CAS  PubMed  Google Scholar 

  40. Wang ZY, Gaggero A, Rubartelli A, Rosso O, Miotti S, Mezzanzanica D, Canevari S, Ferrini S (2002) Expression of interleukin-18 in human ovarian carcinoma and normal ovarian epithelium: evidence for defective processing in tumor cells. Int J Cancer 98:873

    Article  CAS  PubMed  Google Scholar 

  41. Yuan D, Koh CY, Wilder JA (1994) Interactions between B lymphocytes and NK cells. FASEB J 8:1012

    CAS  PubMed  Google Scholar 

  42. Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B (1998) Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 188:2375

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Chris Bromley for technical assistance and the National Cancer Institute for human rIL-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles T. Lutz.

Additional information

This work was supported by National Institutes of Health grant DE11139.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, M.B., Kurago, Z.B., Fullenkamp, C.A. et al. Squamous cell carcinoma cells differentially stimulate NK cell effector functions: the role of IL-18. Cancer Immunol Immunother 52, 107–115 (2003). https://doi.org/10.1007/s00262-002-0361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-002-0361-8

Keywords

Navigation