Skip to main content

Advertisement

Log in

Early detection of pancreatic cancer in the era of precision medicine

  • Review
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related mortality and it is often diagnosed at advanced stages due to non-specific clinical presentation. Disease detection at localized disease stage followed by surgical resection remains the only potentially curative treatment. In this era of precision medicine, a multifaceted approach to early detection of PDAC includes targeted screening in high-risk populations, serum biomarkers and “liquid biopsies”, and artificial intelligence augmented tumor detection from radiologic examinations. In this review, we will review these emerging techniques in the early detection of PDAC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA: A Cancer Journal for Clinicians. 2024;74(1):12–49. https://doi.org/10.3322/caac.21820.

  2. Rahib L, Wehner MR, Matrisian LM, Nead KT. Estimated Projection of US Cancer Incidence and Death to 2040. JAMA Network Open. 2021;4(4):e214708. doi: https://doi.org/10.1001/jamanetworkopen.2021.4708.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cancer of the Pancreas - Cancer Stat Facts. SEER. https://seer.cancer.gov/statfacts/html/pancreas.html. Accessed September 30, 2023.

  4. Hackert T, Klaiber U, Pausch T, Mihaljevic AL, Büchler MW. Fifty Years of Surgery for Pancreatic Cancer. Pancreas. 2020;49(8):1005–1013. doi: https://doi.org/10.1097/MPA.0000000000001634.

    Article  PubMed  Google Scholar 

  5. Takikawa T, Kikuta K, Hamada S, et al. Clinical features and prognostic impact of asymptomatic pancreatic cancer. Sci Rep. 2022;12:4262. doi: https://doi.org/10.1038/s41598-022-08083-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsuchiya R, Noda T, Harada N, et al. Collective review of small carcinomas of the pancreas. Ann Surg. 1986;203(1):77–81. doi: https://doi.org/10.1097/00000658-198601000-00013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goggins M, Overbeek KA, Brand R, et al. Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut. 2020;69(1):7–17. doi: https://doi.org/10.1136/gutjnl-2019-319352.

    Article  CAS  PubMed  Google Scholar 

  8. Poruk KE, Firpo MA, Mulvihill SJ. Screening for pancreatic cancer. Adv Surg. 2014;48:115–136. doi: https://doi.org/10.1016/j.yasu.2014.05.004.

    Article  PubMed  Google Scholar 

  9. Al-Sukhni W, Borgida A, Rothenmund H, et al. Screening for pancreatic cancer in a high-risk cohort: an eight-year experience. J Gastrointest Surg. 2012;16(4):771–783. doi: https://doi.org/10.1007/s11605-011-1781-6.

    Article  PubMed  Google Scholar 

  10. Del Chiaro M, Segersvärd R, Lohr M, Verbeke C. Early detection and prevention of pancreatic cancer: is it really possible today? World J Gastroenterol. 2014;20(34):12118–12131. doi: https://doi.org/10.3748/wjg.v20.i34.12118.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nagata N, Kawazoe A, Mishima S, et al. Development of Pancreatic Cancer, Disease-specific Mortality, and All-Cause Mortality in Patients with Nonresected IPMNs: A Long-term Cohort Study. Radiology. 2016;278(1):125–134. doi: https://doi.org/10.1148/radiol.2015150131.

    Article  PubMed  Google Scholar 

  12. Hruban RH, Maitra A, Goggins M. Update on Pancreatic Intraepithelial Neoplasia. Int J Clin Exp Pathol. 2008;1(4):306–316.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gangi S, Fletcher JG, Nathan MA, et al. Time interval between abnormalities seen on CT and the clinical diagnosis of pancreatic cancer: retrospective review of CT scans obtained before diagnosis. AJR Am J Roentgenol. 2004;182(4):897–903. doi: https://doi.org/10.2214/ajr.182.4.1820897.

    Article  PubMed  Google Scholar 

  14. Toshima F, Watanabe R, Inoue D, et al. CT Abnormalities of the Pancreas Associated With the Subsequent Diagnosis of Clinical Stage I Pancreatic Ductal Adenocarcinoma More Than 1 Year Later: A Case-Control Study. American Journal of Roentgenology. American Roentgen Ray Society; 2021;217(6):1353–1364. doi: https://doi.org/10.2214/AJR.21.26014.

    Article  PubMed  Google Scholar 

  15. Park BK, Koh HD, Won SY, et al. Suspicious findings observed retrospectively on CT imaging performed before the diagnosis of pancreatic cancer. J Gastrointest Oncol. 2023;14(2):1008–1018. doi: https://doi.org/10.21037/jgo-22-863.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Singh DP, Sheedy S, Goenka AH, et al. Computerized tomography scan in pre-diagnostic pancreatic ductal adenocarcinoma: Stages of progression and potential benefits of early intervention: A retrospective study. Pancreatology. 2020;20(7):1495–1501. doi: https://doi.org/10.1016/j.pan.2020.07.410.

    Article  PubMed  Google Scholar 

  17. Yu J, Blackford AL, Dal Molin M, Wolfgang CL, Goggins M. Time to progression of pancreatic ductal adenocarcinoma from low-to-high tumour stages. Gut. 2015;64(11):1783–1789. doi: https://doi.org/10.1136/gutjnl-2014-308653.

    Article  PubMed  Google Scholar 

  18. Nakahodo J, Kikuyama M, Fukumura Y, et al. Focal pancreatic parenchyma atrophy is a harbinger of pancreatic cancer and a clue to the intraductal spreading subtype. Pancreatology. 2022;22(8):1148–1158. doi: https://doi.org/10.1016/j.pan.2022.10.003.

    Article  PubMed  Google Scholar 

  19. Henrikson NB, Aiello Bowles EJ, Blasi PR, et al. Screening for Pancreatic Cancer: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA. 2019;322(5):445–454. doi: https://doi.org/10.1001/jama.2019.6190.

    Article  PubMed  Google Scholar 

  20. Ibrahim IS, Bonsing BA, Swijnenburg R-J, et al. Dilemmas in the management of screen-detected lesions in patients at high risk for pancreatic cancer. Familial Cancer. 2017;16(1):111–115. doi: https://doi.org/10.1007/s10689-016-9915-3.

    Article  PubMed  Google Scholar 

  21. Shi C, Hruban RH, Klein AP. Familial pancreatic cancer. Arch Pathol Lab Med. 2009;133(3):365–374. doi: https://doi.org/10.5858/133.3.365.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Permuth-Wey J, Egan KM. Family history is a significant risk factor for pancreatic cancer: results from a systematic review and meta-analysis. Fam Cancer. 2009;8(2):109–117. doi: https://doi.org/10.1007/s10689-008-9214-8.

    Article  PubMed  Google Scholar 

  23. Harinck F, Konings IC a. W, Kluijt I, et al. A multicentre comparative prospective blinded analysis of EUS and MRI for screening of pancreatic cancer in high-risk individuals. Gut. BMJ Publishing Group; 2016;65(9):1505–1513. doi: https://doi.org/10.1136/gutjnl-2014-308008.

    Article  CAS  PubMed  Google Scholar 

  24. Aslanian HR, Lee JH, Canto MI. AGA Clinical Practice Update on Pancreas Cancer Screening in High-Risk Individuals: Expert Review. Gastroenterology. 2020;159(1):358–362. doi: https://doi.org/10.1053/j.gastro.2020.03.088.

    Article  CAS  PubMed  Google Scholar 

  25. Freeny PC, Marks WM, Ryan JA, Traverso LW. Pancreatic ductal adenocarcinoma: diagnosis and staging with dynamic CT. Radiology. Radiological Society of North America; 1988;166(1):125–133. doi: https://doi.org/10.1148/radiology.166.1.2827228.

    Article  CAS  PubMed  Google Scholar 

  26. Frampas E, Morla O, Regenet N, Eugène T, Dupas B, Meurette G. A solid pancreatic mass: Tumour or inflammation? Diagnostic and Interventional Imaging. 2013;94(7):741–755. doi: https://doi.org/10.1016/j.diii.2013.03.013.

    Article  CAS  PubMed  Google Scholar 

  27. Huang C, Simeone DM, Luk L, et al. Standardization of MRI Screening and Reporting in Individuals With Elevated Risk of Pancreatic Ductal Adenocarcinoma: Consensus Statement of the PRECEDE Consortium. American Journal of Roentgenology. American Roentgen Ray Society; 2022;219(6):903–914. doi: https://doi.org/10.2214/AJR.22.27859.

    Article  PubMed  Google Scholar 

  28. Kang KM, Lee JM, Shin C-I, et al. Added value of diffusion-weighted imaging to MR cholangiopancreatography with unenhanced mr imaging for predicting malignancy or invasiveness of intraductal papillary mucinous neoplasm of the pancreas. J Magn Reson Imaging. 2013;38(3):555–563. doi: https://doi.org/10.1002/jmri.24022.

    Article  PubMed  Google Scholar 

  29. Fatima Z, Ichikawa T, Motosugi U, et al. Magnetic resonance diffusion-weighted imaging in the characterization of pancreatic mucinous cystic lesions. Clin Radiol. 2011;66(2):108–111. doi: https://doi.org/10.1016/j.crad.2010.10.004.

    Article  CAS  PubMed  Google Scholar 

  30. Dbouk M, Katona BW, Brand RE, et al. The Multicenter Cancer of Pancreas Screening Study: Impact on Stage and Survival. JCO. Wolters Kluwer; 2022;40(28):3257–3266. https://doi.org/10.1200/JCO.22.00298.

  31. Canto MI, Almario JA, Schulick RD, et al. Risk of Neoplastic Progression in Individuals at High Risk for Pancreatic Cancer Undergoing Long-term Surveillance. Gastroenterology. 2018;155(3):740-751.e2. doi: https://doi.org/10.1053/j.gastro.2018.05.035.

    Article  PubMed  Google Scholar 

  32. Paiella S, Salvia R, De Pastena M, et al. Screening/surveillance programs for pancreatic cancer in familial high-risk individuals: A systematic review and proportion meta-analysis of screening results. Pancreatology. 2018;18(4):420–428. doi: https://doi.org/10.1016/j.pan.2018.04.002.

    Article  PubMed  Google Scholar 

  33. Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012;9(6):703–719. doi: https://doi.org/10.4161/rna.20481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–1558. doi: https://doi.org/10.1126/science.1235122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Macgregor-Das A, Yu J, Tamura K, et al. Detection of Circulating Tumor DNA in Patients with Pancreatic Cancer Using Digital Next-Generation Sequencing. The Journal of Molecular Diagnostics. 2020;22(6):748–756. doi: https://doi.org/10.1016/j.jmoldx.2020.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bettegowda C, Sausen M, Leary RJ, et al. Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies. Science Translational Medicine. American Association for the Advancement of Science; 2014;6(224):224ra24–224ra24. https://doi.org/10.1126/scitranslmed.3007094.

  37. Cohen JD, Javed AA, Thoburn C, et al. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences; 2017;114(38):10202–10207. doi: https://doi.org/10.1073/pnas.1704961114.

    Article  CAS  Google Scholar 

  38. Sefrioui D, Blanchard F, Toure E, et al. Diagnostic value of CA19.9, circulating tumour DNA and circulating tumour cells in patients with solid pancreatic tumours. Br J Cancer. 2017;117(7):1017–1025. doi: https://doi.org/10.1038/bjc.2017.250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu Y, Zhang H, Chen N, Hao J, Jin H, Ma X. Diagnostic value of various liquid biopsy methods for pancreatic cancer: A systematic review and meta-analysis. Medicine. 2020;99(3):e18581. doi: https://doi.org/10.1097/MD.0000000000018581.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gorgannezhad L, Umer M, Islam MN, Nguyen N-T, Shiddiky MJA. Circulating tumor DNA and liquid biopsy: opportunities, challenges, and recent advances in detection technologies. Lab Chip. 2018;18(8):1174–1196. doi: https://doi.org/10.1039/C8LC00100F.

    Article  CAS  PubMed  Google Scholar 

  41. Martin-Alonso C, Tabrizi S, Xiong K, et al. Priming agents transiently reduce the clearance of cell-free DNA to improve liquid biopsies. Science. 2024;383(6680):eadf2341. https://doi.org/10.1126/science.adf2341.

  42. Kandimalla R, van Tilborg AA, Zwarthoff EC. DNA methylation-based biomarkers in bladder cancer. Nat Rev Urol. 2013;10(6):327–335. doi: https://doi.org/10.1038/nrurol.2013.89.

    Article  CAS  PubMed  Google Scholar 

  43. Lam K, Pan K, Linnekamp JF, Medema JP, Kandimalla R. DNA methylation based biomarkers in colorectal cancer: A systematic review. Biochim Biophys Acta. 2016;1866(1):106–120. doi: https://doi.org/10.1016/j.bbcan.2016.07.001.

    Article  CAS  PubMed  Google Scholar 

  44. Ying L, Sharma A, Chhoda A, et al. Methylation-based Cell-free DNA Signature for Early Detection of Pancreatic Cancer. Pancreas. 2021;50(9):1267. doi: https://doi.org/10.1097/MPA.0000000000001919.

    Article  CAS  PubMed  Google Scholar 

  45. Eissa MAL, Lerner L, Abdelfatah E, et al. Promoter methylation of ADAMTS1 and BNC1 as potential biomarkers for early detection of pancreatic cancer in blood. Clin Epigenetics. 2019;11(1):59. doi: https://doi.org/10.1186/s13148-019-0650-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Introducing the Avantect Pancreatic Cancer Test. Avantect. https://www.avantect.com/. Accessed March 28, 2024.

  47. Galleri Test. GRAIL. https://grail.com/galleri-test/. Accessed March 28, 2024.

  48. Mazer BL, Lee JW, Roberts NJ, et al. Screening for pancreatic cancer has the potential to save lives, but is it practical? Expert Rev Gastroenterol Hepatol. 2023;17(6):555–574. doi: https://doi.org/10.1080/17474124.2023.2217354.

    Article  CAS  PubMed  Google Scholar 

  49. Martini V, Timme-Bronsert S, Fichtner-Feigl S, Hoeppner J, Kulemann B. Circulating Tumor Cells in Pancreatic Cancer: Current Perspectives. Cancers. Multidisciplinary Digital Publishing Institute; 2019;11(11):1659. doi: https://doi.org/10.3390/cancers11111659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kulemann B, Pitman MB, Liss AS, et al. Circulating Tumor Cells Found in Patients With Localized and Advanced Pancreatic Cancer. Pancreas. 2015;44(4):547. doi: https://doi.org/10.1097/MPA.0000000000000324.

    Article  CAS  PubMed  Google Scholar 

  51. Rhim AD, Mirek ET, Aiello NM, et al. EMT and dissemination precede pancreatic tumor formation. Cell. 2012;148(1–2):349–361. doi: https://doi.org/10.1016/j.cell.2011.11.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lozar T, Gersak K, Cemazar M, Kuhar CG, Jesenko T. The Biology and Clinical Potential of Circulating Tumor Cells. Radiol Oncol. 2019;53(2):131–147. doi: https://doi.org/10.2478/raon-2019-0024.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wei T, Zhang X, Zhang Q, et al. Vimentin-positive circulating tumor cells as a biomarker for diagnosis and treatment monitoring in patients with pancreatic cancer. Cancer Letters. 2019;452:237–243. doi: https://doi.org/10.1016/j.canlet.2019.03.009.

    Article  CAS  PubMed  Google Scholar 

  54. Chen J, Wang H, Zhou L, Liu Z, Tan X. A combination of circulating tumor cells and CA199 improves the diagnosis of pancreatic cancer. J Clin Lab Anal. 2022;36(5):e24341. doi: https://doi.org/10.1002/jcla.24341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yeo D, Bastian A, Strauss H, Saxena P, Grimison P, Rasko JEJ. Exploring the Clinical Utility of Pancreatic Cancer Circulating Tumor Cells. Int J Mol Sci. 2022;23(3):1671. doi: https://doi.org/10.3390/ijms23031671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ju S, Chen C, Zhang J, et al. Detection of circulating tumor cells: opportunities and challenges. Biomark Res. 2022;10:58. doi: https://doi.org/10.1186/s40364-022-00403-2.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ko SW, Yoon SB. Clinical implications and perspectives of portal venous circulating tumor cells in pancreatic cancer. World J Gastrointest Oncol. 2023;15(4):632–643. doi: https://doi.org/10.4251/wjgo.v15.i4.632.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Catenacci DVT, Chapman CG, Xu P, et al. Acquisition of Portal Venous Circulating Tumor Cells From Patients With Pancreaticobiliary Cancers by Endoscopic Ultrasound. Gastroenterology. 2015;149(7):1794-1803.e4. doi: https://doi.org/10.1053/j.gastro.2015.08.050.

    Article  PubMed  Google Scholar 

  59. Junqueira-Neto S, Batista IA, Costa JL, Melo SA. Liquid Biopsy beyond Circulating Tumor Cells and Cell-Free DNA. Acta Cytol. 2019;63(6):479–488. doi: https://doi.org/10.1159/000493969.

    Article  CAS  PubMed  Google Scholar 

  60. Yadav DK, Bai X, Yadav RK, et al. Liquid biopsy in pancreatic cancer: the beginning of a new era. Oncotarget. 2018;9(42):26900–26933. doi: https://doi.org/10.18632/oncotarget.24809.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Melo SA, Luecke LB, Kahlert C, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. Nature Publishing Group; 2015;523(7559):177–182. doi: https://doi.org/10.1038/nature14581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lai X, Wang M, McElyea SD, Sherman S, House M, Korc M. A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett. 2017;393:86–93. doi: https://doi.org/10.1016/j.canlet.2017.02.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Madhavan B, Yue S, Galli U, et al. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. Int J Cancer. 2015;136(11):2616–2627. doi: https://doi.org/10.1002/ijc.29324.

    Article  CAS  PubMed  Google Scholar 

  64. Xiao D, Dong Z, Zhen L, et al. Combined Exosomal GPC1, CD82, and Serum CA19-9 as Multiplex Targets: A Specific, Sensitive, and Reproducible Detection Panel for the Diagnosis of Pancreatic Cancer. Molecular Cancer Research. 2020;18(2):300–310. doi: https://doi.org/10.1158/1541-7786.MCR-19-0588.

    Article  CAS  PubMed  Google Scholar 

  65. Allenson K, Castillo J, San Lucas FA, et al. High prevalence of mutantKRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Annals of Oncology. 2017;28(4):741–747. doi: https://doi.org/10.1093/annonc/mdx004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chu LC, Park S, Kawamoto S, Yuille AL, Hruban RH, Fishman EK. Pancreatic Cancer Imaging: A New Look at an Old Problem. Curr Probl Diagn Radiol. 2021;50(4):540–550. doi: https://doi.org/10.1067/j.cpradiol.2020.08.002.

    Article  PubMed  Google Scholar 

  67. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444. doi: https://doi.org/10.1038/nature14539.

    Article  CAS  PubMed  Google Scholar 

  68. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2016;278(2):563–577. doi: https://doi.org/10.1148/radiol.2015151169.

    Article  PubMed  Google Scholar 

  69. Ahmed TM, Kawamoto S, Hruban RH, Fishman EK, Soyer P, Chu LC. A primer on artificial intelligence in pancreatic imaging. Diagnostic and Interventional Imaging. 2023; doi: https://doi.org/10.1016/j.diii.2023.03.002.

    Article  PubMed  Google Scholar 

  70. Chu LC, Park S, Kawamoto S, et al. Utility of CT Radiomics Features in Differentiation of Pancreatic Ductal Adenocarcinoma From Normal Pancreatic Tissue. AJR Am J Roentgenol. 2019;213(2):349–357. doi: https://doi.org/10.2214/AJR.18.20901.

    Article  PubMed  Google Scholar 

  71. Chen P-T, Chang D, Yen H, et al. Radiomic Features at CT Can Distinguish Pancreatic Cancer from Noncancerous Pancreas. Radiology: Imaging Cancer. 2021;3(4):e210010. https://doi.org/10.1148/rycan.2021210010.

  72. Chen P-T, Wu T, Wang P, et al. Pancreatic Cancer Detection on CT Scans with Deep Learning: A Nationwide Population-based Study. Radiology. 2022;220152. doi: https://doi.org/10.1148/radiol.220152.

    Article  Google Scholar 

  73. Ozkan M, Cakiroglu M, Kocaman O, et al. Age-based computer-aided diagnosis approach for pancreatic cancer on endoscopic ultrasound images. Endosc Ultrasound. 2016;5(2):101–107. doi: https://doi.org/10.4103/2303-9027.180473.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cao K, Xia Y, Yao J, et al. Large-scale pancreatic cancer detection via non-contrast CT and deep learning. Nat Med. 2023;29(12):3033–3043. doi: https://doi.org/10.1038/s41591-023-02640-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Korfiatis P, Suman G, Patnam NG, et al. Automated Artificial Intelligence Model Trained on a Large Data Set Can Detect Pancreas Cancer on Diagnostic Computed Tomography Scans As Well As Visually Occult Preinvasive Cancer on Prediagnostic Computed Tomography Scans. Gastroenterology. 2023;165(6):1533-1546.e4. doi: https://doi.org/10.1053/j.gastro.2023.08.034.

    Article  PubMed  Google Scholar 

  76. Qureshi TA, Gaddam S, Wachsman AM, et al. Predicting Pancreatic Ductal Adenocarcinoma Using Artificial Intelligence Analysis of Pre-diagnostic Computed Tomography Images. Cancer Biomark. 2022;33(2):211–217. doi: https://doi.org/10.3233/CBM-210273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Javed S, Qureshi TA, Gaddam S, et al. Risk prediction of pancreatic cancer using AI analysis of pancreatic subregions in computed tomography images. Front Oncol. 2022;12:1007990. doi: https://doi.org/10.3389/fonc.2022.1007990.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chen W, Zhou Y, Asadpour V, et al. Quantitative Radiomic Features From Computed Tomography Can Predict Pancreatic Cancer up to 36 Months Before Diagnosis. Clinical and Translational Gastroenterology. 2023;14(1):e00548. doi: https://doi.org/10.14309/ctg.0000000000000548.

    Article  PubMed  Google Scholar 

  79. Mukherjee S, Patra A, Khasawneh H, et al. Radiomics-based Machine-learning Models Can Detect Pancreatic Cancer on Prediagnostic Computed Tomography Scans at a Substantial Lead Time Before Clinical Diagnosis. Gastroenterology. 2022;163(5):1435-1446.e3. doi: https://doi.org/10.1053/j.gastro.2022.06.066.

    Article  PubMed  Google Scholar 

  80. Tobaly D, Santinha J, Sartoris R, et al. CT-Based Radiomics Analysis to Predict Malignancy in Patients with Intraductal Papillary Mucinous Neoplasm (IPMN) of the Pancreas. Cancers (Basel). 2020;12(11):3089. doi: https://doi.org/10.3390/cancers12113089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cui S, Tang T, Su Q, et al. Radiomic nomogram based on MRI to predict grade of branching type intraductal papillary mucinous neoplasms of the pancreas: a multicenter study. Cancer Imaging. 2021;21(1):26. doi: https://doi.org/10.1186/s40644-021-00395-6.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Cheng S, Shi H, Lu M, et al. Radiomics Analysis for Predicting Malignant Potential of Intraductal Papillary Mucinous Neoplasms of the Pancreas: Comparison of CT and MRI. Acad Radiol. 2022;29(3):367–375. doi: https://doi.org/10.1016/j.acra.2021.04.013.

    Article  PubMed  Google Scholar 

  83. Corral JE, Hussein S, Kandel P, Bolan CW, Bagci U, Wallace MB. Deep Learning to Classify Intraductal Papillary Mucinous Neoplasms Using Magnetic Resonance Imaging. Pancreas. 2019;48(6):805. doi: https://doi.org/10.1097/MPA.0000000000001327.

    Article  PubMed  Google Scholar 

  84. Kuwahara T, Hara K, Mizuno N, et al. Usefulness of Deep Learning Analysis for the Diagnosis of Malignancy in Intraductal Papillary Mucinous Neoplasms of the Pancreas. Clin Transl Gastroenterol. 2019;10(5):1–8. doi: https://doi.org/10.14309/ctg.0000000000000045.

    Article  CAS  PubMed  Google Scholar 

  85. Hernandez-Barco YG, Daye D, Fernandez-del Castillo CF, et al. IPMN-LEARN: A linear support vector machine learning model for predicting low-grade intraductal papillary mucinous neoplasms. Ann Hepatobiliary Pancreat Surg. 2023;27(2):195–200. doi: https://doi.org/10.14701/ahbps.22-107.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pereira SP, Oldfield L, Ney A, et al. Early detection of pancreatic cancer. The Lancet Gastroenterology & Hepatology. Elsevier; 2020;5(7):698–710. doi: https://doi.org/10.1016/S2468-1253(19)30416-9.

    Article  Google Scholar 

  87. Finger A, Harris M, Nishimura E, Yoon H-C. Inadequate Clinical Indications in Computed Tomography Chest and Abdomen/Pelvis Scans. Perm J. 2018;22:18–017. doi: https://doi.org/10.7812/TPP/18-017.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Vasen H, Ibrahim I, Ponce CG, et al. Benefit of Surveillance for Pancreatic Cancer in High-Risk Individuals: Outcome of Long-Term Prospective Follow-Up Studies From Three European Expert Centers. J Clin Oncol. 2016;34(17):2010–2019. doi: https://doi.org/10.1200/JCO.2015.64.0730.

    Article  CAS  PubMed  Google Scholar 

  89. Overbeek KA, Levink IJM, Koopmann BDM, et al. Long-term yield of pancreatic cancer surveillance in high-risk individuals. Gut. 2022;71(6):1152–1160. doi: https://doi.org/10.1136/gutjnl-2020-323611.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by The Lustgarten Foundation. Taha M. Ahmed, Satomi Kawamoto, Felipe Lopez-Ramirez, and Mohmmad Yasrab receive grant support from The Lustgarten Foundation. Linda C. Chu receives grant support from The Lustgarten Foundation and the Emerson Collective. Elliot K. Fishman reports grant support from the Lustgarten Foundation, Siemens, GE, and is the co-founder of HipGraphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda C. Chu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, T.M., Kawamoto, S., Lopez-Ramirez, F. et al. Early detection of pancreatic cancer in the era of precision medicine. Abdom Radiol (2024). https://doi.org/10.1007/s00261-024-04358-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00261-024-04358-w

Keywords

Navigation