Skip to main content
Log in

Approaches, advantages, and challenges to photon counting detector and multi-energy CT

  • Perspective
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Photon counting detector CT (PCD-CT) is the newest major development in CT technology and has been commercially available since 2021. It offers major technological advantages over current standard-of-care energy integrating detector CT (EID-CT) including improved spatial resolution, improved iodine contrast to noise ratio, multi-energy imaging, and reduced noise. This article serves as a foundational basis to the technical approaches and concepts of PCD-CT technology with primary emphasis on detector technology in direct comparison to EID-CT. The article also addresses current technological challenges to PCD-CT with particular attention to cross talk and its causes (e.g., Compton scattering, fluorescence, charge sharing, K-escape) as well as pile-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Not applicable.

References

  1. Hsieh J, Flohr T (2021) Computed tomography recent history and future perspectives. Journal of Medical Imaging 8(5):052109. https://doi.org/10.1117/1.JMI.8.5.052109.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rajendran K, Petersilka M, Henning A, Shanblatt ER, Schmidt B, Flohr TG, Ferrero A, Baffour F, Diehn FE, Yu L, Rajiah P, Fletcher JG, Leng S, McCollough CH (2021) First Clinical Photon-counting Detector CT System: Technical Evaluation. Radiology 303(1): 130–138. https://doi.org/10.1148/radiol.212579.

    Article  PubMed  Google Scholar 

  3. Willemink MJ, Persson M, Pourmorteza A, Pelc NJ, Fleischmann D (2018) Photon-counting CT: Technical Principles and Clinical Prospects. Radiology 289(2):293–312. https://doi.org/10.1148/radiol.2018172656.

    Article  PubMed  Google Scholar 

  4. Leng S, Rajendran K, Gong H, Zhou W, Halaweish AF, Henning A, Kappler S, Baer M, Fletcher JG, McCollough CH (2018) 150-µm Spatial Resolution Using Photon-Counting Detector Computed Tomography Technology: Technical Performance and First Patient Images. Investigative Radiology 53(11):655–662. https://doi.org/10.1097/rli.0000000000000488.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Woeltjen MM, Niehoff JH, Michael AE, Horstmeier S, Moenninghoff C, Borggrefe J, Kroeger JR (2022) Low-Dose High-Resolution Photon-Counting CT of the Lung: Radiation Dose and Image Quality in the Clinical Routine. Diagnostics 12(6):1441. https://doi.org/10.3390/diagnostics12061441.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Flohr T, Schmidt B (2023) Technical Basics and Clinical Benefits of Photon-Counting CT. Investigative Radiology 58(7):441–450. https://doi.org/10.1097/rli.0000000000000980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shefer E, Altman A, Behling R, Goshen R, Gregorian L, Roterman Y, Uman I, Wainer N, Yagil Y, Zarchin O (2013) State of the Art of CT Detectors and Sources: A Literature Review. Current Radiology Reports 1:76–91.

    Article  Google Scholar 

  8. Rajagopal JR, Farhadi F, Solomon J, Sahbaee P, Saboury B, Pritchard WF, Jones EC, Samei E (2021) Comparison of Low Dose Performance of Photon-Counting and Energy Integrating CT. Academic Radiology 28(12):1754–1760. https://doi.org/10.1016/j.acra.2020.07.033.

    Article  PubMed  Google Scholar 

  9. Blasse G, Grabmaier BC (1994) A General Introduction to Luminescent Materials. In Luminescent Materials. https://doi.org/10.1007/978-3-642-79017-1_1.

  10. Lecoq P (2020) Scintillation Detectors for Charged Particles and Photons. In: Fabjan C, Schopper H (eds) Particle Physics Reference Library. Springer, Cham. https://doi.org/10.1007/978-3-030-35318-6_3.

    Chapter  Google Scholar 

  11. Jiang H, Hoffman DM, Vartuli JS (2003) CT detector array having non pixelated scintillator array. In: Office USPaT, ed.: General Electric Co GE Medical Systems Global Technology Co LLC.

  12. Wang J, Fleischmann D (2018) Improving Spatial Resolution at CT: Development, Benefits, and Pitfalls. Radiology 289(1):261–262. https://doi.org/10.1148/radiol.2018181156.

    Article  PubMed  Google Scholar 

  13. Grimmer R, Krause J, Karolczak M, Lapp R, Kachelriess M (2008) Assessment of spatial resolution in CT. IEEE Nuclear Science Symposium Conference Record pp5562-5566. https://doi.org/10.1109/NSSMIC.2008.4774508.

  14. Schaller S, Wildberger JE, Raupach R, Niethammer M, Klingenbeck-Regn K, Flohr T (2003) Spatial domain filtering for fast modification of the tradeoff between image sharpness and pixel noise in computed tomography. IEEE Transactions on Medical Imaging 22(7):846–53. https://doi.org/10.1109/tmi.2003.815073.

    Article  PubMed  Google Scholar 

  15. Herman GT, Natterer F (1981) Mathematical Aspects of Computerized Tomography. In Lecture Notes in Medical Informatics Volume 8. https://doi.org/10.1007/978-3-642-93157-4.

  16. Karimi S, Hall J, Smith JA, Tringe J (2023) The Impact of Cross-Talk in a Flat Panel Detector on CT Image Quality. IEEE Open Journal of Instrumentation and Measurement 6142:835–846. https://doi.org/10.1117/12.654499.

    Article  Google Scholar 

  17. Toia GV, Kim S, Dighe MK, Mileto A (2018) Dual-Energy Computed Tomography in Body Imaging. Semin Roentgenol 53(2):132–46. https://doi.org/10.1053/j.ro.2018.02.004.

    Article  PubMed  Google Scholar 

  18. Lenga L, Czwikla R, Wichmann JL, Leithner D, Albrecht MH, Booz C, Arendt CT, Yel I, D’Angelo T, Vogl TJ, Martin SS (2018) Dual-energy CT in patients with colorectal cancer: Improved assessment of hypoattenuating liver metastases using noise-optimized virtual monoenergetic imaging. European Journal of Radiology 106:184–191. https://doi.org/10.1016/j.ejrad.2018.07.027.

    Article  PubMed  Google Scholar 

  19. Duan X, Wang J, Leng S, Schmidt B, Allmendinger T, Grant K, Flohr T, McCollough CH (2013) Electronic noise in CT detectors: Impact on image noise and artifacts. AJR American Journal of Roentgenology 201(4):W626-32. https://doi.org/10.2214/ajr.12.10234.

    Article  PubMed  Google Scholar 

  20. Nehra AK, Rajendran K, Baffour FI, Mileto A, Rajiah PS, Horst KK, Inoue A, Johnson TF, Diehn FE, Glazebrook KN, et al (2023) Seeing More with Less: Clinical Benefits of Photon-counting Detector CT. Radiographics 43(5):e220158. https://doi.org/10.1148/rg.220158.

    Article  PubMed  Google Scholar 

  21. Marsh JF, Jorgensen SM, Rundle DS, Vercnocke AJ, Leng S, Butler PH, McCollough CH, Ritman EL (2018) Evaluation of a photon counting Medipix3RX cadmium zinc telluride spectral x-ray detector. Journal of Medical Imaging. 5(4):043503. https://doi.org/10.1117/1.jmi.5.4.043503.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Salyapongse AM, Rose SD, Pickhardt PJ, Lubner MG, Toia GV, Bujila R, Yin Z, Slavic S, Szczykutowicz TP, Salyapongse AM, Rose SD, Pickhardt PJ, Lubner MG, Toia GV, Bujila R, Yin Z, Slavic S, Szczykutowicz TP (2023) CT Number Accuracy and Association With Object Size: A Phantom Study Comparing Energy-Integrating Detector CT and Deep Silicon Photon-Counting Detector CT. American Journal of Roentgenology 221(4):539–547. https://doi.org/10.2214/ajr.23.29463.

    Article  PubMed  Google Scholar 

  23. Shikhaliev PM, Fritz SG, Chapman JW (2009) Photon counting multienergy x-ray imaging: effect of the characteristic x rays on detector performance. Medical Physics 36(11):5107–19. https://doi.org/10.1118/1.3245875.

    Article  CAS  PubMed  Google Scholar 

  24. Tanguay J, Cunningham IA (2018) Cascaded systems analysis of charge sharing in cadmium telluride photon-counting x-ray detectors. Medical Physics 45(5):1926–1941. https://doi.org/10.1002/mp.12853.

    Article  CAS  PubMed  Google Scholar 

  25. Taguchi K, Iwanczyk JS (2021) Assessment of multi-energy inter‐pixel coincidence counters for photon‐counting detectors at the presence of charge sharing and pulse pileup: A simulation study. Medical Physics 48(9):4909–4925. https://doi.org/10.1002/mp.15112.

    Article  PubMed  Google Scholar 

  26. Schlomka JP, Roessl E, Dorscheid R, Dill S, Martens G, Istel T, Bäumer C, Herrmann C, Steadman R, Zeitler G, Livne A, Proksa R (2008) Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Physics in Medicine & Biology 53(15):4031–47. https://doi.org/10.1088/0031-9155/53/15/002.

    Article  CAS  Google Scholar 

  27. Taguchi K (2017) Energy-sensitive photon counting detector-based X-ray computed tomography. Radiological Physics and Technology 10(1):8–22. https://doi.org/10.1007/s12194-017-0390-9.

    Article  PubMed  Google Scholar 

  28. Michel T, Anton G, Böhnel M, Durst J, Firsching M, Korn A, Kreisler B, Loehr A, Nachtrab F, Niederlöhner D, Sukowski F, Talla PT (2006) A fundamental method to determine the signal-to-noise ratio (SNR) and detective quantum efficiency (DQE) for a photon counting pixel detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 568(2):799–802. https://doi.org/10.1016/j.nima.2006.08.115.

  29. Roessl E, Brendel B, Engel K-J, Schlomka J-P, Thran A, Proksa R (2011) Sensitivity of photon-counting based K-edge imaging in X-ray computed tomography. IEEE Transactions on Medical Imaging 30(9):1678–90. https://doi.org/10.1109/tmi.2011.2142188.

    Article  PubMed  Google Scholar 

  30. Treb K, Radtke J, Culberson WS, Li K (2023) Simultaneous photon counting and charge integrating for pulse pile-up correction in paralyzable photon counting detectors. Physics in Medicine and Biology 68(15). https://doi.org/10.1088/1361-6560/ace2a9.

  31. Sidky EY, Paul ER, Gilat-Schmidt T, Pan X (2022) Spectral calibration of photon-counting detectors at high photon flux. Medical Physics 49(10):6368–6383. https://doi.org/10.1002/mp.15942.

    Article  CAS  PubMed  Google Scholar 

  32. Hsieh SS, Rajbhandary PL, Pelc NJ (2018) Spectral resolution and high-flux capability tradeoffs in CdTe detectors for clinical CT. Medical Physics 45(4):1433–1443. https://doi.org/10.1002/mp.12799.

    Article  CAS  PubMed  Google Scholar 

  33. Nakamura Y, Higaki T, Kondo S, Kawashita I, Takahashi I, Awai K (2023) An introduction to photon-counting detector CT (PCD CT) for Radiologists. Japanese Journal of Radiology 41:266–282. https://doi.org/10.1007/s11604-022-01350-6.

    Article  PubMed  Google Scholar 

  34. Si-Mohamed SA, Boccalini S, Lacombe H, Diaw A, Varasteh M, Rodesch P-A, Dessouky R, Villien M, Tatard-Leitman V, Bochaton T et al (2022) Coronary CT Angiography with Photon-counting CT: First-In-Human Results. Radiology 303(2):303–313. https://doi.org/10.1148/radiol.211780.

    Article  PubMed  Google Scholar 

  35. Gutjahr R, Halaweish AF, Yu Z, Leng S, Yu L, Li Z, Jorgensen SM, Ritman EL, Kappler S, McCollough CH (2016) Human Imaging with Photon Counting-Based Computed Tomography at Clinical Dose Levels: Contrast-to-Noise Ratio and Cadaver Studies. Investigative Radiology 51(7):421–9. https://doi.org/10.1097/rli.0000000000000251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dane B, Freedman D, Qian K, Ginocchio L, Smereka P, Megibow A (2024) Photon-counting CT urogram: optimal acquisition potential (kV) determination for virtual noncontrast creation. Abdominal Radiology 49:868–874. https://doi.org/10.1007/s00261-023-04113-7.

    Article  PubMed  Google Scholar 

  37. Sartoretti T, Wildberger JE, Flohr T, Alkadhi H (2023) Photon-counting detector CT: Early Clinical Experience Review. The British Journal of Radiology 96(1147):20220544. https://doi.org/10.1259/bjr.20220544.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schwartz FR, Malinzak MD, Amrhein TJ (2022) Photon-Counting Computed Tomography Scan of a Cerebrospinal Fluid Venous Fistula. JAMA Neurol 79(6):628–629. https://doi.org/10.1001/jamaneurol.2022.0687.

    Article  PubMed  Google Scholar 

  39. Hermans R, Boomgaert L, Cockmartin L, Binst J, De Stefanis R, Bosmans H (2023) Photon-counting CT allows better visualization of temporal bone structures in comparison with current generation multi-detector CT. Insights Imaging 14(1):112. https://doi.org/10.1186/s13244-023-01467-w.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gaillandre Y, Duhamel A, Flohr T, Faivre JB, Khung S, Hutt A, Felloni P, Remy J, Remy-Jardin M (2023) Ultra-high resolution CT imaging of interstitial lung disease: impact of photon-counting CT in 112 patients. European Radiology 33(8):5528–5539. https://doi.org/10.1007/s00330-023-09616-x.

    Article  PubMed  Google Scholar 

  41. Takahashi Y, Higaki F, Sugaya A, Asano Y, Kojima K, Morimitsu Y, Akagi N, Itoh T, Matsui Y, Hiraki T (2024) Evaluation of the ear ossicles with photon-counting detector CT. Japanese Journal of Radiology 42(2):158–164. https://doi.org/10.1007/s11604-023-01485-0.

    Article  PubMed  Google Scholar 

  42. Wrazidlo R, Walder L, Estler A, Gutjahr R, Schmidt B, Faby S, Fritz J, Nikolaou K, Horger M, Hagen F (2023) Radiation Dose Reduction in Contrast-Enhanced Abdominal CT: Comparison of Photon-Counting Detector CT with 2nd Generation Dual-Source Dual-Energy CT in an oncologic cohort. Academic Radiology 30(5):855–862. https://doi.org/10.1016/j.acra.2022.05.021.

    Article  PubMed  Google Scholar 

  43. Hagen F, Walder L, Fritz J, Gutjahr R, Schmidt B, Faby S, Bamberg F, Schoenberg S, Nikolaou K, Horger M (2022) Image Quality and Radiation Dose of Contrast-Enhanced Chest-CT Acquired on a Clinical Photon-Counting Detector CT vs. Second-Generation Dual-Source CT in an Oncologic Cohort: Preliminary Results. Tomography 8(3):1466–1476. https://doi.org/10.3390/tomography8030119.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dane B, Qian K, Soni R, Megibow A (2024) Crohn’s disease inflammation severity assessment with iodine density from photon counting CT enterography: comparison with endoscopic histopathology. Abdominal Radiology 49(1):271–278. https://doi.org/10.1007/s00261-023-04060-3.

    Article  PubMed  Google Scholar 

  45. McCollough CH, Rajendran K, Leng S (2023) Standardization and Quantitative Imaging With Photon-Counting Detector CT. Investigative Radiology 58(7):451–458. https://doi.org/10.1097/rli.0000000000000948.

    Article  CAS  PubMed  Google Scholar 

  46. Mergen V, Racine D, Jungblut L, Sartoretti T, Bickel S, Monnin P, Higashigaito K, Martini K, Alkadhi H, Euler A (2022) Virtual Noncontrast Abdominal Imaging with Photon-counting Detector CT. Radiology 305(1):107–115. https://doi.org/10.1148/radiol.213260.

    Article  PubMed  Google Scholar 

  47. Bhattarai A, Tanaka R, Yeung AWK, Vardhanabhuti V (2023) Photon-Counting CT Material Decomposition in Bone Imaging. Journal of Imaging 9(10):209. https://doi.org/10.3390/jimaging9100209.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Grönberg F, Lundberg J, Sjölin M, Persson M, Bujila R, Bornefalk H, Almqvist H, Holmin S, Danielsson M (2020) Feasibility of unconstrained three-material decomposition: imaging an excised human heart using a prototype silicon photon-counting CT detector. European Radiology 30(11):5904–5912. https://doi.org/10.1007/s00330-020-07017-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yalynska T, Polacin M, Frauenfelder T, Martini K (2022) Impact of Photon Counting Detector CT Derived Virtual Monoenergetic Images on the Diagnosis of Pulmonary Embolism. Diagnostics 12(11):2715. https://doi.org/10.3390/diagnostics12112715.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Faby S, Kuchenbecker S, Sawall S, Simons D, Schlemmer HP, Lell M, Kachelrieb M (2015) Performance of today’s dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: A simulation study. Medical Physics 42(7):4349–4366. https://doi.org/10.1118/1.4922654.

    Article  PubMed  Google Scholar 

  51. Toia GV, Mileto A, Wang CL, Sahani DV (2022) Quantitative Dual-energy CT Techniques in the Abdomen. Abdominal Radiology 47(9):3003–3018. https://doi.org/10.1007/s00261-021-03266-7.

    Article  PubMed  Google Scholar 

  52. Decker JA, Bette S, Lubina N, Rippel K, Braun F, Risch F, Woznicki P, Wollyny C, Scheurig-Muenkler C, Kroencke TJ, Schwarz F (2022) Low-dose CT of the abdomen: Initial experience on a novel photon-counting detector CT and comparison with energy-integrating detector CT. European Journal of Radiology 148:110181. https://doi.org/10.1016/j.ejrad.2022.110181.

    Article  PubMed  Google Scholar 

  53. Schmidt TG, Sammut BA, Barner RF, Pan Z, Sidky EY (2022) Addressing CT metal artifacts using photon-counting detectors and one-step spectral CT image reconstruction. Medical Physics 49(5):3021–3040. https://doi.org/10.1002/mp.15621

    Article  CAS  PubMed  Google Scholar 

  54. Gutjahr R, Halaweish AF, Yu Z, Leng S, Yu L, Li Z, Jorgensen S, Ritman EL, Kappler S, McCollough CH (2016) Human Imaging with Photon Counting-Based Computed Tomography at Clinical Dose Levels. Investigative Radiology 51(7):421–429. https://doi.org/10.1097/rli.0000000000000251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou W, Bartlett DJ, Diehn F, Glazebrook KN, Kotsenas, Carter RE, Fletcher JG, McCollough CH, Leng S (2019) Reduction of Metal Artifacts and Improvement in Dose Efficiency Using Photon-Counting Detector Computed Tomography and Tin Filtration. Investigative Radiology 54(4):204–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. van der Bie J, Bos D, Dijkshoorn ML, Booij R, Budde RPJ, van Straten M (2024) Thin slice-photon-counting CT coronary angiography compared to conventional CT: Objective image quality and clinical radiation dose assessment. Medical Physics 51(4):2924–2932. https://doi.org/10.1002/mp.16992.

    Article  CAS  PubMed  Google Scholar 

  57. Sartoretti T, Landsmann A, Nakhostin D, Eberhard M, Roeren C, Mergen V, Higashigaito K, Raupach R, Alkadhi H, Euler A (2022) Quantum Iterative Reconstruction for Abdominal Photon-counting Detector CT Improves Image Quality. Radiology 303(2):339–348. https://doi.org/10.1148/radiol.211931.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the working members of the Society of Abdominal Radiology Photon Counting CT Emerging Technology Commission for reviewing and endorsing this work for publication.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors have reviewed and approved the final document and provided editorial input and met all ICJME requirements for authorship.

Corresponding author

Correspondence to Giuseppe V. Toia.

Ethics declarations

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Competing interests

Giuseppe V. Toia is an independent consultant for GE Healthcare and Canon Medical on work unrelated to this manuscript. Achille Mileto has no disclosures. Amir A. Borhani receives in-kind research support from Siemens Healthineers and is also consultant to Boston Scientific and AstraZeneca for works unrelated to this manuscript. Guang-Hong Chen receives research support from GE Healthcare for work unrelated to this manuscript and research support from National Institutes of Health for work unrelated to this manuscript. Liqiang Ren has no disclosures. Jennifer W. Uyeda has no disclosures. Daniele Marin receives research support from Siemens Healthineers for work unrelated to this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toia, G.V., Mileto, A., Borhani, A.A. et al. Approaches, advantages, and challenges to photon counting detector and multi-energy CT. Abdom Radiol (2024). https://doi.org/10.1007/s00261-024-04357-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00261-024-04357-x

Keywords

Navigation