Skip to main content

Advertisement

Log in

Cholangiocarcinoma imaging: from diagnosis to response assessment

  • Review
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Cholangiocarcinoma (CCA), a highly aggressive primary liver cancer arising from the bile duct epithelium, represents a substantial proportion of hepatobiliary malignancies, posing formidable challenges in diagnosis and treatment. Notably, the global incidence of intrahepatic CCA has seen a rise, necessitating a critical examination of diagnostic and management strategies, especially due to presence of close imaging mimics such as hepatocellular carcinoma (HCC) and combined hepatocellular carcinoma–cholangiocarcinoma (cHCC–CCA). Hence, it is imperative to understand the role of various imaging modalities such as ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI), elucidating their strengths, and limitations in diagnostic precision and staging accuracy. Beyond conventional approaches, there is emerging significance of functional imaging tools including positron emission tomography (PET)–CT and diffusion-weighted (DW)-MRI, providing pivotal insights into diagnosis, therapeutic assessment, and prognostic evaluation. This comprehensive review explores the risk factors, classification, clinical features, and role of imaging in the holistic spectrum of diagnosis, staging, management, and restaging for CCA, hence serving as a valuable resource for radiologists evaluating CCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Courtesy: Susanne Loomis, BS, BFA, BS, MS, FBCA, Production Supervisor, Medical and Scientific Communications, Department of Radiology, Massachusetts General Hospital, Boston

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

AJCC:

American Joint Committee on Cancer

CBD:

Common bile duct

CCA:

Cholangiocarcinoma

iCCA:

Intrahepatic cholangiocarcinoma

pCCA:

Perihilar cholangiocarcinoma

dCCA:

Distal or extrahepatic cholangiocarcinoma

CEA:

Carcinoembryonic antigen

CE-US:

Contrast-enhanced ultrasound

CT:

Computed tomography

DWI:

Diffusion-weighted imaging

EASL:

European Association for the Study of the Liver

EBRT:

External beam radiotherapy

ERCP:

Endoscopic retrograde cholangiopancreatography

FF:

Fat fraction

18F-FDG:

18F-fluoro-2-deoxy-d-glucose

FLR:

Future liver remnant

Gd-EOB-DTPA:

Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid

HCC:

Hepatocellular carcinoma

ID:

Iodine density

LI-RADS:

Liver imaging reporting and data system

LVD:

Liver venous deprivation

MDCT:

Multidetector CT

MRA:

Magnetic resonance angiography

MRCP:

Magnetic resonance cholangiopancreatography

MRI:

Magnetic resonance imaging

MTV:

Metabolic tumor volume

NIU:

Normalized iodine uptake

PET:

Positron emission tomography

PLC:

Primary liver cancer

PSC:

Primary sclerosing cholangitis

PVE:

Portal vein embolization

RECIST:

Response evaluation criteria in solid tumors

SBRT:

Stereotactic body radiation therapy

SUV:

Standardized uptake values

99mTc-GSA:

99mTc-labeled galactosyl human serum albumin

TLG:

Total lesion glycolysis

T1WI :

T1-weighted image

T2WI :

T2-weighted image

TUE images:

True unenhanced images

UICC:

Union for International Cancer Control

VUE image:

Virtual unenhanced image

References

  1. Khan SA, Thomas HC, Davidson BR, Taylor-Robinson SD. Cholangiocarcinoma. Lancet. 2005 Oct 8;366(9493):1303–14. doi: https://doi.org/10.1016/S0140-6736(05)67530-7. Erratum in: Lancet. 2006 May 20;367(9523):1656. PMID: 16214602.

  2. Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet. 2014 Jun 21;383(9935):2168–79. doi: https://doi.org/10.1016/S0140-6736(13)61903-0. Epub 2014 Feb 26. PMID: 24581682; PMCID: PMC4069226.

  3. Razumilava N, Gores GJ. Classification, diagnosis, and management of cholangiocarcinoma. Clin Gastroenterol Hepatol. 2013 Jan;11(1):13–21.e1; quiz e3–4. doi: https://doi.org/10.1016/j.cgh.2012.09.009. Epub 2012 Sep 13. PMID: 22982100; PMCID: PMC3596004.

  4. Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatology. 2011 Jul;54(1):173–84. doi: https://doi.org/10.1002/hep.24351. PMID: 21488076; PMCID: PMC3125451.

  5. Shaib YH, Davila JA, McGlynn K, El-Serag HB. Rising incidence of intrahepatic cholangiocarcinoma in the United States: a true increase? J Hepatol. 2004 Mar;40(3):472–7. doi: https://doi.org/10.1016/j.jhep.2003.11.030. PMID: 15123362.

  6. Shaib Y, El-Serag HB. The epidemiology of cholangiocarcinoma. Semin Liver Dis 2004; 24: 115–25.

    Article  PubMed  Google Scholar 

  7. Khan AS, Dageforde LA. Cholangiocarcinoma. Surg Clin North Am. 2019 Apr;99(2):315–335. doi: https://doi.org/10.1016/j.suc.2018.12.004. Epub 2019 Feb 10. PMID: 30846037.

  8. Wu LM, Chen F, Xu JR, Hu JN, Wang FY, Liang JY. Diagnosis of hilar cholangiocarcinoma: a systematic review and meta-analysis. Br J Radiol. 2012 Mar;85(1011):1255–62.

  9. Bertuccio P, Malvezzi M, Carioli G, Hashim D, Boffetta P, El-Serag HB, La Vecchia C, Negri E. Global trends in mortality from intrahepatic and extrahepatic cholangiocarcinoma. J Hepatol. 2019 Jul;71(1):104–114. doi: https://doi.org/10.1016/j.jhep.2019.03.013. Epub 2019 Mar 23. PMID: 30910538.

  10. Eggel H. Uber das primare Carcinoma der Leber. Beitr Pathol Anat Allg Pathol 1901;30:506–604

    Google Scholar 

  11. Weinbren K, Mutum SS. Pathological aspects of cholangiocarcinoma. J Pathol 1983;139:217–238

    Article  CAS  PubMed  Google Scholar 

  12. Rosai J. Ackerman’s surgical pathology, 8th ed. St. Louis: Mosby, 1996:914–915, 960

  13. Liver Cancer Study Group of Japan. The general rules for the clinical and pathological study of primary liver cancer, 4th ed. Tokyo: Kanehara, 2000

    Google Scholar 

  14. Sobin LH, Gospodarowicz MK, Wittekind C, editors. UICC TNM classification of malignant tumours, 7th edn. New York: WileyBlackwell; 2009.

    Google Scholar 

  15. Banales, J.M., Marin, J.J.G., Lamarca, A. et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 17, 557–588 (2020). https://doi.org/10.1038/s41575-020-0310-z

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nakeeb A, Pitt HA, Sohn TA, et al. Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. Ann Surg 1996; 224: 463–473; discussion 473–475

  17. Vanderveen KA, Hussain HK. Magnetic resonance imaging of cholangiocarcinoma. Cancer Imaging 2004; 4: 104–115.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bismuth H, Corlette MB. Intrahepatic cholangioenteric anastomosis in carcinoma of the hilus of the liver. Surg Gynecol Obstet. 1975 Feb;140(2):170–8. PMID: 1079096

  19. Ghouri YA, Mian I, Blechacz B. Cancer review: Cholangiocarcinoma. J Carcinog. 2015 Feb 23;14:1. doi: https://doi.org/10.4103/1477-3163.151940. PMID: 25788866; PMCID: PMC4360553.

  20. de Groen PC, Gores GJ, LaRusso NF, Gunderson LL, Nagorney DM. Biliary tract cancers. N Engl J Med. 1999;341(18):1368–78.

    Article  PubMed  Google Scholar 

  21. Hyeong Seok Kim, Youngmin Han, Jae Seung Kang, Yoon Hyung Kang, Mirang Lee, Hee Ju Sohn, Hongbeom Kim, Wooil Kwon, Jin-Young Jang, Serum carcinoembryonic antigen and carbohydrate antigen 19-9 as preoperative diagnostic biomarkers of extrahepatic bile duct cancer, BJS Open, Volume 5, Issue 6, November 2021, zrab127, https://doi.org/10.1093/bjsopen/zrab127

  22. Liang B, Zhong L, He Q, Wang S, Pan Z, Wang T, Zhao Y. Diagnostic Accuracy of Serum CA19-9 in Patients with Cholangiocarcinoma: A Systematic Review and Meta-Analysis. Med Sci Monit. 2015 Nov 18;21:3555–63. doi: https://doi.org/10.12659/msm.895040. PMID: 26576628; PMCID: PMC4655615.

  23. Kajiwara H, Yasuda M, Kumaki N, et al. Expression of carbohydrate antigens (SSEA-1, sialyl-Lewis X, DU-PAN-2 and CA19-9) and E-selectin in urothelial carcinoma of the renal pelvis, ureter, and urinary bladder. Tokai J Exp Clin Med. 2005;30:177–82.

    CAS  PubMed  Google Scholar 

  24. Fang T, Wang H, Wang Y, Lin X, Cui Y, Wang Z. Clinical Significance of Preoperative Serum CEA, CA125, and CA19-9 Levels in Predicting the Resectability of Cholangiocarcinoma. Dis Markers. 2019 Feb 4;2019:6016931. doi: https://doi.org/10.1155/2019/6016931. PMID: 30863466; PMCID: PMC6378785.

  25. Qin XL, Wang ZR, Shi JS, Lu M, Wang L, He QR. Utility of serum CA19-9 in diagnosis of cholangiocarcinoma: in comparison with CEA. World J Gastroenterol. 2004 Feb 1;10(3):427–32. doi: https://doi.org/10.3748/wjg.v10.i3.427. PMID: 14760772; PMCID: PMC4724921.

  26. Joo I, Lee JM, Yoon JH. Imaging Diagnosis of Intrahepatic and Perihilar Cholangiocarcinoma: Recent Advances and Challenges. Radiology. 2018 Jul;288(1):7–13. doi: https://doi.org/10.1148/radiol.2018171187. Epub 2018 Jun 5. PMID: 29869969.

  27. Kendall, T., Verheij, J., Gaudio, E., Evert, M., Guido, M., Goeppert, B., & Carpino, G. Anatomical, histomorphological and molecular classification of cholangiocarcinoma. Liver International, 39, 7–18.

  28. Vilgrain V. Staging cholangiocarcinoma by imaging studies. HPB (Oxford). 2008;10(2):106–9. doi: https://doi.org/10.1080/13651820801992617. PMID: 18773065; PMCID: PMC2504386.

  29. Kim SA, Lee JM, Lee KB, et al. Intrahepatic mass-forming cholangiocarcinomas: enhancement patterns at multiphasic CT, with special emphasis on arterial enhancement pattern–correlation with clinicopathologic findings. Radiology 2011;260(1):148–157.

    Article  PubMed  Google Scholar 

  30. Srinivas-Rao S, Cao J, Marin D, Kambadakone A. Dual-Energy Computed Tomography to Photon Counting Computed Tomography: Emerging Technological Innovations. Radiol Clin North Am. 2023 Nov;61(6):933–944. doi: https://doi.org/10.1016/j.rcl.2023.06.015. Epub 2023 Aug 8. PMID: 37758361.

  31. Mahmoudi S, Bernatz S, Althoff FC, Koch V, Grünewald LD, Scholtz JE, Walter D, Zeuzem S, Wild PJ, Vogl TJ, Kinzler MN. Dual-energy CT based material decomposition to differentiate intrahepatic cholangiocarcinoma from hepatocellular carcinoma. Eur J Radiol. 2022 Nov;156:110556. doi: https://doi.org/10.1016/j.ejrad.2022.110556. Epub 2022 Oct 13. PMID: 36270195.

  32. Jhaveri KS, Hosseini-Nik H. MRI of cholangiocarcinoma. J Magn Reson Imaging 2015;42:1165–79. https://doi.org/10.1002/jmri.24810

    Article  PubMed  Google Scholar 

  33. Seo N, Kim DY, Choi JY. Cross-Sectional Imaging of Intrahepatic Cholangiocarcinoma: Development, Growth, Spread, and Prognosis. AJR Am J Roentgenol. 2017 Aug;209(2):W64–W75. doi: https://doi.org/10.2214/AJR.16.16923. Epub 2017 Jun 1. PMID: 28570102.

  34. Ruys AT, van Beem BE, Engelbrecht MR, Bipat S, Stoker J, Van Gulik TM. Radiological staging in patients with hilar cholangiocarcinoma: a systematic review and meta-analysis. Br J Radiol 2012;85(1017):1255–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brant WE, Helms CA. Fundamentals of Diagnostic Radiology. Philadelphia: Lippincott-Williams 2012;886–7. Available online: https://www.amazon.com/Fundamentals-Diagnostic-Radiology-Set-Brant/dp/1608319121

  36. Wibulpolprasert B, Dhiensiri T. Peripheral cholangiocarcinoma: sonographic evaluation. J Clin Ultrasound 1992;20(5):303–314.

    Article  CAS  PubMed  Google Scholar 

  37. Chung YE, Kim MJ, Park YN, et al. Varying appearances of cholangiocarcinoma: radiologic–pathologic correlation. Radiographics 2009;29:683–700. https://doi.org/10.1148/rg.293085729

    Article  PubMed  Google Scholar 

  38. Wernecke K, Henke L, Vassallo P, et al. Pathologic explanation for hypoechoic halo seen on sonograms of malignant liver tumors: an in vitro correlative study. AJR Am J Roentgenol 1992;159(5):1011–1016.

    Article  CAS  PubMed  Google Scholar 

  39. Hennedige TP, Neo WT, Venkatesh SK. Imaging of malignancies of the biliary tract—an update. Cancer Imaging 2014;14:14.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hann LE, Greatrex KV, Bach AM, Fong Y, Blumgart LH. Cholangiocarcinoma at the hepatic hilus: sonographic findings. AJR Am J Roentgenol. 1997 Apr;168(4):985–9. doi: https://doi.org/10.2214/ajr.168.4.9124155. PMID: 9124155.

  41. Soyer P, Bluemke DA, Vissuzaine C, et al. CT of hepatic tumors: prevalence and specificity of retraction of the adjacent liver capsule. AJR Am J Roentgenol 1994;162:1119–22. https://doi.org/10.2214/ajr.162.5.8165994

    Article  CAS  PubMed  Google Scholar 

  42. Soyer P, Pelage JP, Zidi SH, et al. Portal vein invasion by intrahepatic peripheral cholangiocarcinoma: a rare cause of portal hypertension. AJR Am J Roentgenol 1998;171:1413–4. https://doi.org/10.2214/ajr.171.5.9798888

    Article  CAS  PubMed  Google Scholar 

  43. Park HS, Lee JM, Kim SH, et al. CT Differentiation of cholangiocarcinoma from periductal fibrosis in patients with hepatolithiasis. AJR Am J Roentgenol 2006;187:445–53. https://doi.org/10.2214/AJR.05.0247

    Article  PubMed  Google Scholar 

  44. Ringe KI, Wacker F. Radiological diagnosis in cholangiocarcinoma: application of computed tomography, magnetic resonance imaging, and positron emission tomography. Best Practice & Research Clinical Gastroenterology 2015;29:253–65. https://doi.org/10.1016/j.bpg.2015.02.004

    Article  Google Scholar 

  45. Ayuso JR, Pagés M, Darnell A. Imaging bile duct tumors: staging. Abdom Imaging 2013;38:1071–81. https://doi.org/10.1007/s00261-013-0021-9

    Article  PubMed  Google Scholar 

  46. Kim NR, Lee JM, Kim SH, et al. Enhancement characteristics of cholangiocarcinomas on mutiphasic helical CT: emphasis on morphologic subtypes. Clin Imaging 2008;32:114–20. https://doi.org/10.1016/j.clinimag.2007.08.022

    Article  CAS  PubMed  Google Scholar 

  47. Blechacz BR, Gores GJ. Cholangiocarcinoma. Clin Liver Dis 2008;12:131–50, ix. https://doi.org/10.1016/j.cld.2007.11.003

    Article  PubMed  Google Scholar 

  48. Poultsides GA, Zhu AX, Choti MA, et al. Intrahepatic cholangiocarcinoma. Surg Clin North Am 2010;90:817–37. https://doi.org/10.1016/j.suc.2010.04.011

    Article  PubMed  Google Scholar 

  49. Dooms GC, Kerlan RK Jr, Hricak H, Wall SD, Margulis AR. Cholangiocarcinoma: imaging by MR. Radiology. 1986;159:89–94.

    Article  CAS  PubMed  Google Scholar 

  50. Maetani Y, Itoh K, Watanabe C, et al. MR imaging of intrahepatic cholangiocarcinoma with pathologic correlation. AJR Am J Roentgenol. 2001;176(6):1499–507.

    Article  CAS  PubMed  Google Scholar 

  51. Low RN. MR imaging of the liver using gadolinium chelates. Magn Reson Imaging Clin N Am. 2001;9(4):717–43.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y. Intrahepatic peripheral cholangiocarcinoma: comparison of dynamic CT and dynamic MRI. J Comput Assist Tomogr. 1999;23(5):670–7.

    Article  CAS  PubMed  Google Scholar 

  53. Murakami T, Nakamura H, Tsuda K, et al. Contrast-enhanced MR imaging of intrahepatic cholangiocarcinoma: pathologic correlation study. J Magn Reson Imaging. 1995;5(2):165–70.

    Article  CAS  PubMed  Google Scholar 

  54. Min JH, Kim YK, Choi SY, Jeong WK, Lee WJ, Ha SY, Ahn S, Ahn HS. Differentiation between cholangiocarcinoma and hepatocellular carcinoma with target sign on diffusion-weighted imaging and hepatobiliary phase gadoxetic acid-enhanced MR imaging: Classification tree analysis applying capsule and septum. Eur J Radiol. 2017 Jul;92:1–10. doi: https://doi.org/10.1016/j.ejrad.2017.04.008. Epub 2017 Apr 13. PMID: 28624005.

  55. Park HJ, Kim YK, Park MJ, et al. Small intrahepatic mass-forming cholangiocarcinoma: target sign on diffusion-weighted imaging for differentiation from hepatocellular carcinoma. Abdom Imaging 2013;38:793–801. https://doi.org/10.1007/s00261-012-9943-x

    Article  PubMed  Google Scholar 

  56. Feng ST, Wu L, Huasong C, et al. Cholangiocarcinoma: spectrum of appearances on Gd-EOB-DTPA-enhanced MR imaging and the effect of biliary function on signal intensity. BMC Cancer 2015;15:38. https://doi.org/10.1186/s12885-015-1039-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim SH, Lee CH, Kim BH, et al. Typical and atypical findings of intrahepatic cholangiocarcinoma using gadolinium ethoxybenzyl diethylenetriamine pentacetic acid-enhanced magnetic resonance imaging. J Comput Assist Tomogr 2012;36:704–9. https://doi.org/10.1097/RCT.0b013e3182706562

    Article  PubMed  Google Scholar 

  58. Lee MG, Park KB, Shin YM, Yoon HK, Sung KB, Kim MH, Lee SG, Kang EM. Preoperative evaluation of hilar cholangiocarcinoma with contrast-enhanced three-dimensional fast imaging with steady-state precession magnetic resonance angiography: comparison with intraarterial digital subtraction angiography. World J Surg. 2003 Mar;27(3):278–83. doi: https://doi.org/10.1007/s00268-002-6701-1. Epub 2003 Feb 27. PMID: 12607051.

  59. Hann LE, Schwartz LH, Panicek DM, Bach AM, Fong Y, Blumgart LH. Tumor involvement in hepatic veins: comparison of MR imaging and US for preoperative assessment. Radiology. 1998;206(3):651–6.

    Article  CAS  PubMed  Google Scholar 

  60. Aljiffry M, Abdulelah A, Walsh M, Peltekian K, Alwayn I, Molinari M. Evidence-based approach to cholangiocarcinoma: a systematic review of the current literature. J Am Coll Surg 2009;208(1):134–147.

    Article  PubMed  Google Scholar 

  61. Huang B, Wu L, Lu XY, et al. Small intrahepatic cholangiocarcinoma and hepatocellular carcinoma in cirrhotic livers may share similar enhancement patterns at multiphase dynamic MR imaging. Radiology 2016;281(1):150–157.

    Article  PubMed  Google Scholar 

  62. Joo I, Kim H, Lee JM. Cancer stem cells in primary liver cancers: pathological concepts and imaging findings. Korean J Radiol 2015;16(1):50–68.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Seok JY, Na DC, Woo HG, Roncalli M, Kwon SM, Yoo JE, Ahn EY, Kim GI, Choi JS, Kim YB, Park YN. A fibrous stromal component in hepatocellular carcinoma reveals a cholangiocarcinoma-like gene expression trait and epithelial–mesenchymal transition. Hepatology. 2012 Jun;55(6):1776–86. doi: https://doi.org/10.1002/hep.25570. PMID: 22234953.

  64. Jeong HT, Kim MJ, Kim YE, Park YN, Choi GH, Choi JS. MRI features of hepatocellular carcinoma expressing progenitor cell markers. Liver Int 2012;32(3):430–440.

    Article  PubMed  Google Scholar 

  65. Mitchell DG, Bruix J, Sherman M, Sirlin CB. LI-RADS (Liver Imaging Reporting and Data System): summary, discussion, and consensus of the LI-RADS Management Working Group and future directions. Hepatology 2015;61(3):1056–1065.

    Article  PubMed  Google Scholar 

  66. Brunt E, Aishima S, Clavien PA, Fowler K, Goodman Z, Gores G, et al. cHCC–CCA: consensus terminology for primary liver carcinomas with both hepatocytic and cholangiocytic differentiation. Hepatology 2018;68:113–126.

    Article  PubMed  Google Scholar 

  67. Kim TH, Kim H, Joo I, Lee JM. Combined Hepatocellular-Cholangiocarcinoma: Changes in the 2019 World Health Organization Histological Classification System and Potential Impact on Imaging-Based Diagnosis. Korean J Radiol. 2020 Oct;21(10):1115–1125. https://doi.org/10.3348/kjr.2020.0091

  68. Hwang J, Kim YK, Park MJ, et al. Differentiating combined hepatocellular and cholangiocarcinoma from mass-forming intrahepatic cholangiocarcinoma using gadoxetic acid-enhanced MRI. J Magn Reson Imaging 2012;36(4):881–889.

    Article  PubMed  Google Scholar 

  69. Li R, Yang D, Tang CL, et al. Combined hepatocellular carcinoma and cholangiocarcinoma (biphenotypic) tumors: clinical characteristics, imaging features of contrast-enhanced ultrasound and computed tomography. BMC Cancer 2016;16(1):158.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Matos C, Serrao E, Bali MA. Magnetic resonance imaging of biliary tumors. Magn Reson Imaging Clin N Am 2010;18(3):477–496, x.

  71. Katabathina VS, Dasyam AK, Dasyam N, Hosseinzadeh K. Adult bile duct strictures: role of MR imaging and MR cholangiopancreatography in characterization. RadioGraphics 2014;34(3):565–586.

    Article  PubMed  Google Scholar 

  72. Yu XR, Huang WY, Zhang BY, Li HQ, Geng DY. Differentiation of infiltrative cholangiocarcinoma from benign common bile duct stricture using three-dimensional dynamic contrast-enhanced MRI with MRCP. Clin Radiol 2014;69(6):567–573.

    Article  PubMed  Google Scholar 

  73. Yoo RE, Lee JM, Yoon JH, Kim JH, Han JK, Choi BI. Differential diagnosis of benign and malignant distal biliary strictures: value of adding diffusion-weighted imaging to conventional magnetic resonance cholangiopancreatography. J Magn Reson Imaging. 2014 Jun;39(6):1509–17. doi: https://doi.org/10.1002/jmri.24304. Epub 2013 Oct 17. PMID: 24136813.

  74. Choi KS, Lee JM, Joo I, Han JK, Choi BI. Evaluation of Perihilar Biliary Strictures: Does DWI Provide Additional Value to Conventional MRI? AJR Am J Roentgenol. 2015 Oct;205(4):789–96. doi: https://doi.org/10.2214/AJR.14.14089. Epub 2015 Jul 23. PMID: 26204113.

  75. Furukawa H, Ikuma H, Asakura-Yokoe K, Uesaka K. Preoperative staging of biliary carcinoma using 18F-fluorodeoxyglucose PET: prospective comparison with PET + CT, MDCT and histopathology. Eur Radiol. 2008 Dec;18(12):2841–7. doi: https://doi.org/10.1007/s00330-008-1062-2. Epub 2008 May 29. PMID: 18509655.

  76. Fritscher-Ravens A, Bohuslavizki KH, Broering DC, Jenicke L, Schäfer H, Buchert R, Rogiers X, Clausen M. FDG PET in the diagnosis of hilar cholangiocarcinoma. Nucl Med Commun. 2001 Dec;22(12):1277–85. doi: https://doi.org/10.1097/00006231-200112000-00002. PMID: 11711897.

  77. Wang SB, Wu HB, Wang QS, et al. 18F-FDG PET/CT in differentiating malignant from benign origins of obstructive jaundice. Hepatobiliary Pancreat Dis Int 2015;14(5):516–522.

    Article  PubMed  Google Scholar 

  78. van Vugt JLA, Gaspersz MP, Coelen RJS, Vugts J, Labeur TA, de Jonge J, Polak WG, Busch ORC, Besselink MG, IJzermans JNM, Nio CY, van Gulik TM, Willemssen FEJA, Groot Koerkamp B. The prognostic value of portal vein and hepatic artery involvement in patients with perihilar cholangiocarcinoma. HPB (Oxford). 2018 Jan;20(1):83–92. doi: https://doi.org/10.1016/j.hpb.2017.08.025. Epub 2017 Sep 25. PMID: 28958483.

  79. Doussot, A. et al. Outcomes after resection of intrahepatic cholangiocarcinoma: external validation and comparison of prognostic models. J. Am. Coll. Surg. 221, 452–461 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Amin, M. B. et al. AJCC Cancer Staging Manual (Springer, 2017).

  81. Abbas, S. & Sandroussi, C. Systematic review and meta-analysis of the role of vascular resection in the treatment of hilar cholangiocarcinoma. HPB 15, 492–503 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Valle, J. W. et al. Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 27, v28–v37 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Tzedakis S, Sindayigaya R, Dhote A, Marchese U, Barret M, Belle A, Coriat R, Barat M, Soyer P, Fuks D. Perihilar cholangiocarcinoma: What the radiologist needs to know. Diagn Interv Imaging. 2022 Jun;103(6):288–301. doi: https://doi.org/10.1016/j.diii.2022.03.001. Epub 2022 Mar 18. PMID: 35314126.

  84. Sumiyoshi T, Shima Y, Okabayashi T, Kozuki A, Hata Y, Noda Y, Kouno M, Miyagawa K, Tokorodani R, Saisaka Y, Tokumaru T, Nakamura T, Morita S. Liver function assessment using 99mTc-GSA single-photon emission computed tomography (SPECT)/CT fusion imaging in hilar bile duct cancer: A retrospective study. Surgery. 2016 Jul;160(1):118–126. doi: https://doi.org/10.1016/j.surg.2016.02.009. Epub 2016 Apr 5. PMID: 27059635.

  85. Olthof PB, Coelen RJS, Bennink RJ, Heger M, Lam MF, Besselink MG, Busch OR, van Lienden KP, van Gulik TM. 99mTc-mebrofenin hepatobiliary scintigraphy predicts liver failure following major liver resection for perihilar cholangiocarcinoma. HPB (Oxford). 2017 Oct;19(10):850–858. doi: https://doi.org/10.1016/j.hpb.2017.05.007. Epub 2017 Jul 4. PMID: 28687148.

  86. Yokoyama Y, Nishio H, Ebata T, Igami T, Sugawara G, Nagino M. Value of indocyanine green clearance of the future liver remnant in predicting outcome after resection for biliary cancer. Br J Surg. 2010 Aug;97(8):1260–8. doi: https://doi.org/10.1002/bjs.7084. PMID: 20602507.

  87. Primrose, J. N. et al. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol. 20, 663–673 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Camacho JC, Kokabi N, Xing M, Prajapati HJ, El-Rayes B, Kim HS. Modified response evaluation criteria in solid tumors and European Association for The Study of the Liver criteria using delayed-phase imaging at an early time point predict survival in patients with unresectable intrahepatic cholangiocarcinoma following yttrium-90 radioembolization. J Vasc Interv Radiol. 2014 Feb;25(2):256–65. doi: https://doi.org/10.1016/j.jvir.2013.10.056. PMID: 24461131.

  89. Luc Beuzit, Julien Edeline, Vanessa Brun, Maxime Ronot, Anne Guillygomarc'h, et al. Comparison of Choi criteria and Response Evaluation Criteria in Solid Tumors (RECIST) for intrahepatic cholangiocarcinoma treated with glass-microspheres Yttrium-90 selective internal radiation therapy (SIRT). European Journal of Radiology, 2016, 85(8), pp. 1445–1452. https://doi.org/10.1016/j.ejrad.2016.05.020

    Article  PubMed  Google Scholar 

  90. Persigehl, T., Lennartz, S. & Schwartz, L.H. iRECIST: how to do it. Cancer Imaging 20, 2 (2020). https://doi.org/10.1186/s40644-019-0281-x

    Article  PubMed  PubMed Central  Google Scholar 

  91. Oliveira, I.S., Kilcoyne, A., Everett, J.M. et al. Cholangiocarcinoma: classification, diagnosis, staging, imaging features, and management. Abdom Radiol 42, 1637–1649 (2017). https://doi.org/10.1007/s00261-017-1094-7

    Article  Google Scholar 

  92. Li J, Kuehl H, Grabellus F, Müller SP, Radunz S, Antoch G, Nadalin S, Broelsch CE, Gerken G, Paul A, Kaiser GM. Preoperative assessment of hilar cholangiocarcinoma by dual-modality PET/CT. J Surg Oncol. 2008 Nov 1;98(6):438–43. doi: https://doi.org/10.1002/jso.21136. PMID: 18767120.

  93. Lee Y, Yoo IR, Boo SH, Kim H, Park HL, Hyun O J. The Role of F-18 FDG PET/CT in Intrahepatic Cholangiocarcinoma. Nucl Med Mol Imaging. 2017 Mar;51(1):69–78. doi: https://doi.org/10.1007/s13139-016-0440-y. Epub 2016 Aug 6. PMID: 28250860; PMCID: PMC5313464.

  94. Sahani DV, Hayano K, Galluzzo A, Zhu AX. Measuring treatment response to systemic therapy and predicting outcome in biliary tract cancer: comparing tumor size, volume, density, and metabolism. AJR Am J Roentgenol. 2015 Apr;204(4):776–81. doi: https://doi.org/10.2214/AJR.14.13223. PMID: 25794066.

  95. Corvera CU, Blumgart LH, Akhurst T, DeMatteo RP, D'Angelica M, Fong Y, Jarnagin WR. 18F-fluorodeoxyglucose positron emission tomography influences management decisions in patients with biliary cancer. J Am Coll Surg. 2008 Jan;206(1):57–65. doi: https://doi.org/10.1016/j.jamcollsurg.2007.07.002. Epub 2007 Oct 1. PMID: 18155569.

  96. Fiz, F., Masci, C., Costa, G. et al. PET/CT-based radiomics of mass-forming intrahepatic cholangiocarcinoma improves prediction of pathology data and survival. Eur J Nucl Med Mol Imaging 49, 3387–3400 (2022). https://doi.org/10.1007/s00259-022-05765-1

    Article  CAS  PubMed  Google Scholar 

  97. Zou X, Luo Y, Li Z, Hu Y, Li H, Tang H, Shen Y, Hu D, Kamel IR. Volumetric Apparent Diffusion Coefficient Histogram Analysis in Differentiating Intrahepatic Mass-Forming Cholangiocarcinoma from Hepatocellular Carcinoma. J Magn Reson Imaging. 2019 Apr;49(4):975–983. doi: https://doi.org/10.1002/jmri.26253. Epub 2018 Sep 12. PMID: 30277628.

  98. Promsorn, J., Soontrapa, W., Somsap, K. et al. Evaluation of the diagnostic performance of apparent diffusion coefficient (ADC) values on diffusion-weighted magnetic resonance imaging (DWI) in differentiating between benign and metastatic lymph nodes in cases of cholangiocarcinoma. Abdom Radiol 44, 473–481 (2019). https://doi.org/10.1007/s00261-018-1742-6

    Article  Google Scholar 

  99. Yang, Y., Zou, X., Zhou, W. et al. DWI-based radiomic signature: potential role for individualized adjuvant chemotherapy in intrahepatic cholangiocarcinoma after partial hepatectomy. Insights Imaging 13, 37 (2022). https://doi.org/10.1186/s13244-022-01179-7

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This manuscript did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. All other authors do not have any relevant financial relationships to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Kambadakone.

Ethics declarations

Conflict of interest

Avinash Kambadakone: Research grants (GE, Philips Healthcare and PanCAN; not relevant to this manuscript).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Srinivas-Rao, S., Mroueh, N. et al. Cholangiocarcinoma imaging: from diagnosis to response assessment. Abdom Radiol 49, 1699–1715 (2024). https://doi.org/10.1007/s00261-024-04267-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-024-04267-y

Keywords

Navigation