Skip to main content
Log in

Quantitative susceptibility mapping for detection of kidney stones, hemorrhage differentiation, and cyst classification in ADPKD

  • Kidneys, Ureters, Bladder, Retroperitoneum
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Background and purpose

The objective is to demonstrate feasibility of quantitative susceptibility mapping (QSM) in autosomal dominant polycystic kidney disease (ADPKD) patients and to compare imaging findings with traditional T1/T2w magnetic resonance imaging (MRI).

Methods

Thirty-three consecutive patients (11 male, 22 female) diagnosed with ADPKD were initially selected. QSM images were reconstructed from the multiecho gradient echo data and compared to co-registered T2w, T1w, and CT images. Complex cysts were identified and classified into distinct subclasses based on their imaging features. Prevalence of each subclass was estimated.

Results

QSM visualized two renal calcifications measuring 9 and 10 mm and three pelvic phleboliths measuring 2 mm but missed 24 calcifications measuring 1 mm or less and 1 larger calcification at the edge of the field of view.

A total of 121 complex T1 hyperintense/T2 hypointense renal cysts were detected. 52 (43%) Cysts appeared hyperintense on QSM consistent with hemorrhage; 60 (49%) cysts were isointense with respect to simple cysts and normal kidney parenchyma, while the remaining 9 (7%) were hypointense. The presentation of the latter two complex cyst subtypes is likely indicative of proteinaceous composition without hemorrhage.

Conclusion

Our results indicate that QSM of ADPKD kidneys is possible and uniquely suited to detect large renal calculi without ionizing radiation and able to identify properties of complex cysts unattainable with traditional approaches.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gabow PA. Autosomal dominant polycystic kidney disease. N Engl J Med. 1993;329(5):332–42. doi: https://doi.org/10.1056/NEJM199307293290508.

    Article  CAS  PubMed  Google Scholar 

  2. Spithoven EM, Kramer A, Meijer E, Orskov B, Wanner C, Abad JM, et al. Renal replacement therapy for autosomal dominant polycystic kidney disease (ADPKD) in Europe: prevalence and survival—an analysis of data from the ERA-EDTA Registry. Nephrol Dial Transplant. 2014;29(Suppl 4):iv15–25. doi: https://doi.org/10.1093/ndt/gfu017.

    Article  PubMed  Google Scholar 

  3. Torres VE, Harris PC, Pirson Y. Autosomal dominant polycystic kidney disease. Lancet. 2007;369(9569):1287–301. doi: https://doi.org/10.1016/S0140-6736(07)60601-1.

    Article  PubMed  Google Scholar 

  4. Perrone RD, Ruthazer R, Terrin NC. Survival after end-stage renal disease in autosomal dominant polycystic kidney disease: contribution of extrarenal complications to mortality. Am J Kidney Dis. 2001;38(4):777–84. doi: https://doi.org/10.1053/ajkd.2001.27720.

    Article  CAS  PubMed  Google Scholar 

  5. Cornec-Le Gall E, Alam A, Perrone RD. Autosomal dominant polycystic kidney disease. Lancet. 2019;393(10174):919–35. doi: https://doi.org/10.1016/S0140-6736(18)32782-X.

    Article  PubMed  Google Scholar 

  6. Suwabe T, Ubara Y, Sumida K, Hayami N, Hiramatsu R, Yamanouchi M, et al. Clinical features of cyst infection and hemorrhage in ADPKD: new diagnostic criteria. Clin Exp Nephrol. 2012;16(6):892–902. doi: https://doi.org/10.1007/s10157-012-0650-2.

    Article  CAS  PubMed  Google Scholar 

  7. Riyahi S, Dev H, Blumenfeld JD, Rennert H, Yin X, Attari H, et al. Hemorrhagic Cysts and Other MR Biomarkers for Predicting Renal Dysfunction Progression in Autosomal Dominant Polycystic Kidney Disease. J Magn Reson Imaging. 2021;53(2):564–76. doi: https://doi.org/10.1002/jmri.27360.

    Article  PubMed  Google Scholar 

  8. Cornec-Le Gall E, Audrezet MP, Rousseau A, Hourmant M, Renaudineau E, Charasse C, et al. The PROPKD Score: A New Algorithm to Predict Renal Survival in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol. 2016;27(3):942–51. doi: https://doi.org/10.1681/ASN.2015010016.

    Article  CAS  PubMed  Google Scholar 

  9. Suwabe T, Ubara Y, Ueno T, Hayami N, Hoshino J, Imafuku A, et al. Intracystic magnetic resonance imaging in patients with autosomal dominant polycystic kidney disease: features of severe cyst infection in a case–control study. BMC Nephrol. 2016;17(1):170. doi: https://doi.org/10.1186/s12882-016-0381-9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Marotti M, Hricak H, Fritzsche P, Crooks LE, Hedgcock MW, Tanagho EA. Complex and simple renal cysts: comparative evaluation with MR imaging. Radiology. 1987;162(3):679–84. doi: https://doi.org/10.1148/radiology.162.3.3809481.

    Article  CAS  PubMed  Google Scholar 

  11. Nishiura JL, Eloi SR, Heilberg IP. Pain determinants of pain in autosomal dominant polycystic kidney disease. J Bras Nefrol. 2013;35(3):242–3. doi: https://doi.org/10.5935/0101-2800.20130038.

    Article  PubMed  Google Scholar 

  12. Ozkok A, Akpinar TS, Tufan F, Kanitez NA, Uysal M, Guzel M, et al. Clinical characteristics and predictors of progression of chronic kidney disease in autosomal dominant polycystic kidney disease: a single center experience. Clin Exp Nephrol. 2013;17(3):345–51. doi: https://doi.org/10.1007/s10157-012-0706-3.

    Article  PubMed  Google Scholar 

  13. Alexander RT, Hemmelgarn BR, Wiebe N, Bello A, Morgan C, Samuel S, et al. Kidney stones and kidney function loss: a cohort study. BMJ. 2012;345:e5287. doi: https://doi.org/10.1136/bmj.e5287.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brisbane W, Bailey MR, Sorensen MD. An overview of kidney stone imaging techniques. Nat Rev Urol. 2016;13(11):654–62. doi: https://doi.org/10.1038/nrurol.2016.154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fishman MC, Pollack HM, Arger PH, Banner MP. High protein content: another cause of CT hyperdense benign renal cyst. J Comput Assist Tomogr. 1983;7(6):1103–6.

    Article  CAS  PubMed  Google Scholar 

  16. . Health Effects of Exposure to Low Levels of Ionizing Radiations: Time for Reassessment? Washington (DC)1998.

  17. Wang Y, Liu T. Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker. Magn Reson Med. 2015;73(1):82–101. doi: https://doi.org/10.1002/mrm.25358.

    Article  CAS  PubMed  Google Scholar 

  18. Harada T, Kudo K, Fujima N, Yoshikawa M, Ikebe Y, Sato R, et al. Quantitative Susceptibility Mapping: Basic Methods and Clinical Applications. Radiographics. 2022;42(4):1161–76. doi: https://doi.org/10.1148/rg.210054.

    Article  PubMed  Google Scholar 

  19. Liu J, Liu T, de Rochefort L, Ledoux J, Khalidov I, Chen W, et al. Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map. Neuroimage. 2012;59(3):2560–8. doi: https://doi.org/10.1016/j.neuroimage.2011.08.082.

    Article  PubMed  Google Scholar 

  20. de Rochefort L, Liu T, Kressler B, Liu J, Spincemaille P, Lebon V, et al. Quantitative susceptibility map reconstruction from MR phase data using Bayesian regularization: validation and application to brain imaging. Magn Reson Med. 2010;63(1):194–206. doi: https://doi.org/10.1002/mrm.22187.

    Article  PubMed  Google Scholar 

  21. Chen W, Zhu W, Kovanlikaya I, Kovanlikaya A, Liu T, Wang S, et al. Intracranial calcifications and hemorrhages: characterization with quantitative susceptibility mapping. Radiology. 2014;270(2):496–505. doi: https://doi.org/10.1148/radiol.13122640.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dimov AV, Li J, Nguyen TD, Roberts AG, Spincemaille P, Straub S, et al. QSM Throughout the Body. J Magn Reson Imaging. 2023;57(6):1621–40. doi: https://doi.org/10.1002/jmri.28624.

    Article  PubMed  Google Scholar 

  23. Eskreis-Winkler S, Zhang Y, Zhang J, Liu Z, Dimov A, Gupta A, Wang Y. The clinical utility of QSM: disease diagnosis, medical management, and surgical planning. NMR Biomed. 2017;30(4). doi: https://doi.org/10.1002/nbm.3668.

  24. Fuller S, Reeder S, Shimakawa A, Yu H, Johnson J, Beaulieu C, Gold GE. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) fast spin-echo imaging of the ankle: initial clinical experience. AJR Am J Roentgenol. 2006;187(6):1442–7. doi: https://doi.org/10.2214/AJR.05.0930.

    Article  PubMed  Google Scholar 

  25. Reeder SB, Wen Z, Yu H, Pineda AR, Gold GE, Markl M, Pelc NJ. Multicoil Dixon chemical species separation with an iterative least-squares estimation method. Magn Reson Med. 2004;51(1):35–45. doi: https://doi.org/10.1002/mrm.10675.

    Article  CAS  PubMed  Google Scholar 

  26. Dong J, Liu T, Chen F, Zhou D, Dimov A, Raj A, et al. Simultaneous phase unwrapping and removal of chemical shift (SPURS) using graph cuts: application in quantitative susceptibility mapping. IEEE Trans Med Imaging. 2015;34(2):531–40. doi: https://doi.org/10.1109/TMI.2014.2361764.

    Article  PubMed  Google Scholar 

  27. Pei Y, Obaji J, Dupuis A, Paterson AD, Magistroni R, Dicks E, et al. Unified criteria for ultrasonographic diagnosis of ADPKD. J Am Soc Nephrol. 2009;20(1):205–12. doi: https://doi.org/10.1681/ASN.2008050507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ravine D, Gibson RN, Walker RG, Sheffield LJ, Kincaid-Smith P, Danks DM. Evaluation of ultrasonographic diagnostic criteria for autosomal dominant polycystic kidney disease 1. Lancet. 1994;343(8901):824–7. doi: https://doi.org/10.1016/s0140-6736(94)92026-5.

    Article  CAS  PubMed  Google Scholar 

  29. Eskreis-Winkler S, Corrias G, Monti S, Zheng J, Capanu M, Krebs S, et al. IDEAL-IQ in an oncologic population: meeting the challenge of concomitant liver fat and liver iron. Cancer Imaging. 2018;18(1):51. doi: https://doi.org/10.1186/s40644-018-0167-3.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu T, Wisnieff C, Lou M, Chen W, Spincemaille P, Wang Y. Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping. Magn Reson Med. 2013;69(2):467–76. doi: https://doi.org/10.1002/mrm.24272.

    Article  PubMed  Google Scholar 

  31. Liu T, Khalidov I, de Rochefort L, Spincemaille P, Liu J, Tsiouris AJ, Wang Y. A novel background field removal method for MRI using projection onto dipole fields (PDF). NMR Biomed. 2011;24(9):1129–36. doi: https://doi.org/10.1002/nbm.1670.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116–28. doi: https://doi.org/10.1016/j.neuroimage.2006.01.015.

    Article  PubMed  Google Scholar 

  33. Roubidoux MA. MR imaging of hemorrhage and iron deposition in the kidney. Radiographics. 1994;14(5):1033–44. doi: https://doi.org/10.1148/radiographics.14.5.7991812.

    Article  CAS  PubMed  Google Scholar 

  34. Vinayagamani S, Sheelakumari R, Sabarish S, Senthilvelan S, Ros R, Thomas B, Kesavadas C. Quantitative Susceptibility Mapping: Technical Considerations and Clinical Applications in Neuroimaging. J Magn Reson Imaging. 2021;53(1):23–37. doi: https://doi.org/10.1002/jmri.27058.

    Article  PubMed  Google Scholar 

  35. Ravanfar P, Loi SM, Syeda WT, Van Rheenen TE, Bush AI, Desmond P, et al. Systematic Review: Quantitative Susceptibility Mapping (QSM) of Brain Iron Profile in Neurodegenerative Diseases. Front Neurosci. 2021;15:618435. doi: https://doi.org/10.3389/fnins.2021.618435.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu C, Wei H, Gong NJ, Cronin M, Dibb R, Decker K. Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical Applications. Tomography. 2015;1(1):3–17. doi: https://doi.org/10.18383/j.tom.2015.00136.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nikparast F, Ganji Z, Zare H. Early differentiation of neurodegenerative diseases using the novel QSM technique: what is the biomarker of each disorder? BMC Neurosci. 2022;23(1):48. doi: https://doi.org/10.1186/s12868-022-00725-9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bandt SK, de Rochefort L, Chen WW, Dimov AV, Spincemaille P, Kopell BH, et al. Clinical Integration of Quantitative Susceptibility Mapping Magnetic Resonance Imaging into Neurosurgical Practice. World Neurosurg. 2019;122:E10–E9. doi: https://doi.org/10.1016/j.wneu.2018.08.213.

    Article  PubMed  Google Scholar 

  39. Agnello F, Albano D, Micci G, Di Buono G, Agrusa A, Salvaggio G, et al. CT and MR imaging of cystic renal lesions. Insights Imaging. 2020;11(1):5. doi: https://doi.org/10.1186/s13244-019-0826-3.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Balci NC, Semelka RC, Patt RH, Dubois D, Freeman JA, Gomez-Caminero A, Woosley JT. Complex renal cysts: findings on MR imaging. AJR Am J Roentgenol. 1999;172(6):1495–500. doi: https://doi.org/10.2214/ajr.172.6.10350279.

    Article  CAS  PubMed  Google Scholar 

  41. Bae KT, Grantham JJ. Imaging for the prognosis of autosomal dominant polycystic kidney disease. Nat Rev Nephrol. 2010;6(2):96–106. doi: https://doi.org/10.1038/nrneph.2009.214.

    Article  CAS  PubMed  Google Scholar 

  42. Sallee M, Rafat C, Zahar JR, Paulmier B, Grunfeld JP, Knebelmann B, Fakhouri F. Cyst infections in patients with autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2009;4(7):1183–9. doi: https://doi.org/10.2215/CJN.01870309.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gibson P, Watson ML. Cyst infection in polycystic kidney disease: a clinical challenge. Nephrol Dial Transplant. 1998;13(10):2455–7. doi: https://doi.org/10.1093/ndt/13.10.2455.

    Article  CAS  PubMed  Google Scholar 

  44. Carpenter JP, He T, Kirk P, Roughton M, Anderson LJ, de Noronha SV, et al. Calibration of myocardial T2 and T1 against iron concentration. J Cardiovasc Magn Reson. 2014;16(1):62. doi: https://doi.org/10.1186/s12968-014-0062-4.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kamman RL, Go KG, Brouwer W, Berendsen HJ. Nuclear magnetic resonance relaxation in experimental brain edema: effects of water concentration, protein concentration, and temperature. Magn Reson Med. 1988;6(3):265–74. doi: https://doi.org/10.1002/mrm.1910060304.

    Article  CAS  PubMed  Google Scholar 

  46. Jensen JH, Chandra R. Strong field behavior of the NMR signal from magnetically heterogeneous tissues. Magn Reson Med. 2000;43(2):226–36. doi: https://doi.org/10.1002/(sici)1522-2594(200002)43:2<226::aid-mrm9>3.0.co;2-p.

    Article  CAS  PubMed  Google Scholar 

  47. Luz Z, Meiboom S. Nuclear Magnetic Resonance Study of Protolysis of Trimethylammonium Ion in Aqueous Solution - Order of Reaction with Respect to Solvent. J Chem Phys. 1963;39(2):366-. Doi https://doi.org/10.1063/1.1734254.

    Article  CAS  Google Scholar 

  48. Frahm J, Haase A, Matthaei D. Rapid NMR imaging of dynamic processes using the FLASH technique. Magn Reson Med. 1986;3(2):321–7. doi: https://doi.org/10.1002/mrm.1910030217.

    Article  CAS  PubMed  Google Scholar 

  49. Bernstein MA, King KF, Zhou ZJ. Handbook of MRI pulse sequences. Amsterdam; Boston: Academic Press; 2004.

    Google Scholar 

  50. Shi H, Jia J, Li D, Wei L, Shang W, Zheng Z. Blood oxygen level-dependent magnetic resonance imaging for detecting pathological patterns in patients with lupus nephritis: a preliminary study using gray-level co-occurrence matrix analysis. J Int Med Res. 2018;46(1):204–18. doi: https://doi.org/10.1177/0300060517721794.

    Article  PubMed  Google Scholar 

  51. Mie MB, Nissen JC, Zollner FG, Heilmann M, Schoenberg SO, Michaely HJ, Schad LR. Susceptibility weighted imaging (SWI) of the kidney at 3T--initial results. Z Med Phys. 2010;20(2):143–50. doi: https://doi.org/10.1016/j.zemedi.2010.02.004.

    Article  PubMed  Google Scholar 

  52. Pan L, Chen J, Xing W, Xing Z, Zhang J, Peng Y, Zhang Z. Magnetic resonance imaging evaluation of renal ischaemia–reperfusion injury in a rabbit model. Exp Physiol. 2017;102(8):1000–6. doi: https://doi.org/10.1113/EP086203.

    Article  PubMed  Google Scholar 

  53. Zhang JG, Xing ZY, Zha TT, Tian XJ, Du YN, Chen J, Xing W. Longitudinal assessment of rabbit renal fibrosis induced by unilateral ureteral obstruction using two-dimensional susceptibility weighted imaging. J Magn Reson Imaging. 2018;47(6):1572–7. doi: https://doi.org/10.1002/jmri.25915.

    Article  PubMed  Google Scholar 

  54. Li J, Chang S, Liu T, Wang Q, Cui D, Chen X, et al. Reducing the object orientation dependence of susceptibility effects in gradient echo MRI through quantitative susceptibility mapping. Magn Reson Med. 2012;68(5):1563–9. doi: https://doi.org/10.1002/mrm.24135.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yablonskiy DA, Haacke EM. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med. 1994;32(6):749–63. doi: https://doi.org/10.1002/mrm.1910320610.

    Article  CAS  PubMed  Google Scholar 

  56. Dimov AV, Li J, Nguyen TD, Roberts AG, Spincemaille P, Straub S, et al. QSM Throughout the Body. J Magn Reson Imaging. 2023. doi: https://doi.org/10.1002/jmri.28624.

    Article  PubMed  Google Scholar 

  57. White RM. Quantum theory of magnetism: magnetic properties of materials. 3rd, completely rev. ed. Springer series in solid-state sciences. Berlin; New York: Springer; 2007.

  58. Pauling L. General chemistry. New York: Dover Publications, Inc.; 1988.

    Google Scholar 

  59. Kazancioglu R, Ecder T, Altintepe L, Altiparmak MR, Tuglular S, Uyanik A, et al. Demographic and clinical characteristics of patients with autosomal dominant polycystic kidney disease: a multicenter experience. Nephron Clin Pract. 2011;117(3):c270–5. doi: https://doi.org/10.1159/000320745.

    Article  PubMed  Google Scholar 

  60. Nishiura JL, Neves RF, Eloi SR, Cintra SM, Ajzen SA, Heilberg IP. Evaluation of nephrolithiasis in autosomal dominant polycystic kidney disease patients. Clin J Am Soc Nephrol. 2009;4(4):838–44. doi: https://doi.org/10.2215/CJN.03100608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Torres VE, Wilson DM, Hattery RR, Segura JW. Renal stone disease in autosomal dominant polycystic kidney disease. Am J Kidney Dis. 1993;22(4):513–9. doi: https://doi.org/10.1016/s0272-6386(12)80922-x.

    Article  CAS  PubMed  Google Scholar 

  62. Yaman S, Tekin HC. Magnetic Susceptibility-Based Protein Detection Using Magnetic Levitation. Anal Chem. 2020;92(18):12556–63. doi: https://doi.org/10.1021/acs.analchem.0c02479.

    Article  CAS  PubMed  Google Scholar 

  63. Chang S, Zhang J, Liu T, Tsiouris AJ, Shou J, Nguyen T, et al. Quantitative Susceptibility Mapping of Intracerebral Hemorrhages at Various Stages. J Magn Reson Imaging. 2016;44(2):420–5. doi: https://doi.org/10.1002/jmri.25143.

    Article  PubMed  Google Scholar 

  64. Bradley WG, Jr. MR appearance of hemorrhage in the brain. Radiology. 1993;189(1):15–26. doi: https://doi.org/10.1148/radiology.189.1.8372185.

    Article  PubMed  Google Scholar 

  65. Langkammer C, Liu T, Khalil M, Enzinger C, Jehna M, Fuchs S, et al. Quantitative susceptibility mapping in multiple sclerosis. Radiology. 2013;267(2):551–9. doi: https://doi.org/10.1148/radiol.12120707.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Choi Y, Jang J, Kim J, Nam Y, Shin NY, Ahn KJ, et al. MRI and Quantitative Magnetic Susceptibility Maps of the Brain after Serial Administration of Gadobutrol: A Longitudinal Follow-up Study. Radiology. 2020;297(1):143–50. doi: https://doi.org/10.1148/radiol.2020192579.

    Article  PubMed  Google Scholar 

  67. Liu S, Wang C, Zhang X, Zuo P, Hu J, Haacke EM, Ni H. Quantification of liver iron concentration using the apparent susceptibility of hepatic vessels. Quant Imaging Med Surg. 2018;8(2):123–34. doi: https://doi.org/10.21037/qims.2018.03.02.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wei H, Dibb R, Zhou Y, Sun Y, Xu J, Wang N, Liu C. Streaking artifact reduction for quantitative susceptibility mapping of sources with large dynamic range. NMR Biomed. 2015;28(10):1294–303. doi: https://doi.org/10.1002/nbm.3383.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Liu Z, Kee Y, Zhou D, Wang Y, Spincemaille P. Preconditioned total field inversion (TFI) method for quantitative susceptibility mapping. Magn Reson Med. 2017;78(1):303–15. doi: https://doi.org/10.1002/mrm.26331.

    Article  CAS  PubMed  Google Scholar 

  70. Kim W, Shin HG, Lee H, Park D, Kang J, Nam Y, et al. Chi-Separation Imaging for Diagnosis of Multiple Sclerosis versus Neuromyelitis Optica Spectrum Disorder. Radiology. 2023;307(1):e220941. doi: https://doi.org/10.1148/radiol.220941.

    Article  PubMed  Google Scholar 

  71. Chen J, Gong NJ, Chaim KT, Otaduy MCG, Liu C. Decompose quantitative susceptibility mapping (QSM) to sub-voxel diamagnetic and paramagnetic components based on gradient-echo MRI data. Neuroimage. 2021;242:118477. doi: https://doi.org/10.1016/j.neuroimage.2021.118477.

    Article  PubMed  Google Scholar 

  72. Dimov AV, Nguyen TD, Gillen KM, Marcille M, Spincemaille P, Pitt D, et al. Susceptibility source separation from gradient echo data using magnitude decay modeling. J Neuroimaging. 2022;32(5):852–9. doi: https://doi.org/10.1111/jon.13014.

    Article  PubMed  Google Scholar 

  73. Irazabal MV, Rangel LJ, Bergstralh EJ, Osborn SL, Harmon AJ, Sundsbak JL, et al. Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. J Am Soc Nephrol. 2015;26(1):160–72. doi: https://doi.org/10.1681/ASN.2013101138.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Dimov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 192 kb)

Supplementary file2 (PDF 222 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schumacher, K., Prince, M.R., Blumenfeld, J.D. et al. Quantitative susceptibility mapping for detection of kidney stones, hemorrhage differentiation, and cyst classification in ADPKD. Abdom Radiol (2024). https://doi.org/10.1007/s00261-024-04243-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00261-024-04243-6

Keywords

Navigation