Skip to main content
Log in

Quantitative diffusion weighted imaging in patients with hepatocellular carcinoma: effects of simultaneous multi-slice acceleration and gadoxetic acid administration

  • Hepatobiliary
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate whether simultaneous multi-slice (SMS) acceleration and gadoxetic acid administration affect the quantitative apparent diffusion coefficient (ADC) and signal-to-noise ratio (SNR) measurement of DWI in patients with HCC.

Methods

This prospective study initially enrolled 208 patients with clinically suspected HCC. Free breathing SMS-DWI and conventional DWI (CON-DWI) were performed before and after gadoxetic acid administration. Lesion conspicuity, ADCs and SNRs of the HCC lesion and normal liver parenchyma were independently measured by two radiologists. The paired t test or Wilcoxon signed rank test was used to evaluate the differences of lesion conspicuity, ADCs and SNRs between SMS-DWI and CON-DWI, as well as those before and after gadoxetic acid administration.

Results

A total of 102 HCC patients (90 men and 12 women; mean age, 54.6 ± 11.7 years) were finally included for analysis. SMS-DWI and CON-DWI demonstrated comparable lesion conspicuity (P = 0.081–0.566). For the influence of SMS acceleration, the SNRs of liver parenchyma on enhanced SMS-DWI were significantly higher than enhanced CON-DWI (P = 0.015). For the influence of gadoxetic acid administration, the mean ADCs were significantly higher on enhanced SMS-DWI than unenhanced SMS-DWI (HCC, P = 0.013; liver parenchyma, P = 0.032).

Conclusion

Quantitative ADC measurements of HCC and liver parenchyma were not affected by SMS acceleration, and SMS-DWI can provide higher SNR than CON-DWI. However, the ADC measurements can be affected by gadoxetic acid administration on SMS-DWI, so it is recommended to perform SMS-DWI before gadoxetic acid administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated or analyzed during the study are available from the corresponding author on reasonable request.

References

  1. Gluskin JS, Chegai F, Monti S, Squillaci E, Mannelli L (2016) Hepatocellular Carcinoma and Diffusion-Weighted MRI: Detection and Evaluation of Treatment Response. J Cancer 7(11):1565–1570. Published 2016 Jul 13. doi:https://doi.org/10.7150/jca.14582

    Article  PubMed  PubMed Central  Google Scholar 

  2. Malayeri AA, El Khouli RH, Zaheer A, et al (2011) Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics 31(6):1773–1791. doi:https://doi.org/10.1148/rg.316115515

    Article  PubMed  Google Scholar 

  3. Lim KS (2014)Diffusion-weighted MRI of hepatocellular carcinoma in cirrhosis. Clin Radiol 69(1):1–10. doi:https://doi.org/10.1016/j.crad.2013.07.022

    Article  PubMed  CAS  Google Scholar 

  4. Taron J, Martirosian P, Erb M, et al (2016) Simultaneous multislice diffusion-weighted MRI of the liver: Analysis of different breathing schemes in comparison to standard sequences. J Magn Reson Imaging 44(4):865–879. doi:https://doi.org/10.1002/jmri.25204

    Article  PubMed  Google Scholar 

  5. Taouli B, Koh DM (2010) Diffusion-weighted MR imaging of the liver. Radiology 254(1):47–66. doi:https://doi.org/10.1148/radiol.09090021

    Article  PubMed  Google Scholar 

  6. Boss A, Barth B, Filli L, et al (2016) Simultaneous multi-slice echo planar diffusion weighted imaging of the liver and the pancreas: Optimization of signal-to-noise ratio and acquisition time and application to intravoxel incoherent motion analysis. Eur J Radiol 85(11):1948–1955. doi:https://doi.org/10.1016/j.ejrad.2016.09.002

    Article  PubMed  Google Scholar 

  7. Xu H, Zhang N, Yang DW, et al (2021) Feasibility study of simultaneous multislice diffusion kurtosis imaging with different acceleration factors in the liver. BMC Med Imaging 21(1):132. Published 2021 Sep 9. doi:https://doi.org/10.1186/s12880-021-00661-w

  8. Barth M, Breuer F, Koopmans PJ, Norris DG, Poser BA (2016) Simultaneous multislice (SMS) imaging techniques. Magn Reson Med 75(1):63–81. doi:https://doi.org/10.1002/mrm.25897

    Article  PubMed  Google Scholar 

  9. Cauley SF, Polimeni JR, Bhat H, Wald LL, Setsompop K (2014) Interslice leakage artifact reduction technique for simultaneous multislice acquisitions. Magn Reson Med 72(1):93–102. doi:https://doi.org/10.1002/mrm.24898

    Article  PubMed  Google Scholar 

  10. Obele CC, Glielmi C, Ream J, et al (2015) Simultaneous Multislice Accelerated Free-Breathing Diffusion-Weighted Imaging of the Liver at 3T. Abdom Imaging 40(7):2323–2330. doi:https://doi.org/10.1007/s00261-015-0447-3

    Article  PubMed  Google Scholar 

  11. Vermoolen MA, Kwee TC, Nievelstein RA (2012) Apparent diffusion coefficient measurements in the differentiation between benign and malignant lesions: a systematic review. Insights Imaging 3(4):395–409. doi:https://doi.org/10.1007/s13244-012-0175-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Surov A, Meyer HJ, Wienke A (2017) Correlation between apparent diffusion coefficient (ADC) and cellularity is different in several tumors: a meta-analysis. Oncotarget 8(35):59492–59499. Published 2017 May 10. doi:https://doi.org/10.18632/oncotarget.17752

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yuan Z, Ye XD, Dong S, et al (2010) Role of magnetic resonance diffusion-weighted imaging in evaluating response after chemoembolization of hepatocellular carcinoma. Eur J Radiol 75(1):e9-e14. doi:https://doi.org/10.1016/j.ejrad.2009.05.040

    Article  Google Scholar 

  14. Padhani AR, Liu G, Koh DM, et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 1(2):102–125. doi:https://doi.org/10.1593/neo.81328

    Article  CAS  Google Scholar 

  15. Ringe KI, Husarik DB, Sirlin CB, Merkle EM (2010) Gadoxetate disodium-enhanced MRI of the liver: part 1, protocol optimization and lesion appearance in the noncirrhotic liver. AJR Am J Roentgenol 195(1):13–28. doi:https://doi.org/10.2214/AJR.10.4392

    Article  PubMed  Google Scholar 

  16. Li X, Li C, Wang R, Ren J, Yang J, Zhang Y (2015) Combined Application of Gadoxetic Acid Disodium-Enhanced Magnetic Resonance Imaging (MRI) and Diffusion-Weighted Imaging (DWI) in the Diagnosis of Chronic Liver Disease-Induced Hepatocellular Carcinoma: A Meta-Analysis. PLoS One 10(12):e0144247. Published 2015 Dec 2. doi:https://doi.org/10.1371/journal.pone.0144247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Choi JS, Kim MJ, Choi JY, Park MS, Lim JS, Kim KW (2010) Diffusion-weighted MR imaging of liver on 3.0-Tesla system: effect of intravenous administration of gadoxetic acid disodium. Eur Radiol 20(5):1052–1060. doi:https://doi.org/10.1007/s00330-009-1651-8

    Article  PubMed  Google Scholar 

  18. Tang H, Yuan Y, Deng L, et al (2022) Identification of diffusion weighted imaging would be affected before and after Gd-EOB-DTPA in patients with focal hepatic lesions: an observational study. Ann Transl Med 10(6):346. doi:https://doi.org/10.21037/atm-22-962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Taouli, B., & Koh, D. M (2010) Diffusion-weighted MR imaging of the liver. Radiology, 254(1), 47–66. https://doi.org/10.1148/radiol.09090021

    Article  PubMed  Google Scholar 

  20. Singal, A. G., Llovet, J. M., Yarchoan, M., et al (2023) AASLD Practice Guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology (Baltimore, Md.), 10.1097/HEP.0000000000000466. Advance online publication. https://doi.org/10.1097/HEP.0000000000000466

  21. CT/MRI Liver Imaging Reporting and Data System version 2018. American College of Radiology Website.https://www.acr.org/Clinical-Resources/Reporting-andData-Systems/LI-RADS/CTMRI-LI-RADS-v2018. Accessed 1 December 2018

  22. Norman G. (2010) Likert scales, levels of measurement and the “laws” of statistics. Advances in health sciences education: theory and practice, 15(5), 625–632. https://doi.org/10.1007/s10459-010-9222-y

    Article  PubMed  Google Scholar 

  23. Liang, X., Bi, Z., Yang, C., et al (2022) Free-Breathing Liver Magnetic Resonance Imaging With Respiratory Frequency-Modulated Continuous-Wave Radar-Trigger Technique: A Preliminary Study. Frontiers in oncology, 12, 918173. https://doi.org/10.3389/fonc.2022.918173

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang G, Sun H, Qian T, et al (2019) Diffusion-weighted imaging of the kidney: comparison between simultaneous multi-slice and integrated slice-by-slice shimming echo planar sequence. Clin Radiol 74(4):325.e1-325.e8. https://doi.org/10.1016/j.crad.2018.12.005

    Article  Google Scholar 

  25. Xu J, Cheng YJ, Wang ST, et al (2021) Simultaneous multi-slice accelerated diffusion-weighted imaging with higher spatial resolution for patients with liver metastases from neuroendocrine tumours. Clin Radiol 76(1):81.e11-81.e19. https://doi.org/10.1016/j.crad.2020.08.024

    Article  Google Scholar 

  26. Jang W, Song JS, Kwak HS, Hwang SB, Paek MY (2019) Intra-individual comparison of conventional and simultaneous multislice-accelerated diffusion-weighted imaging in upper abdominal solid organs: value of ADC normalization using the spleen as a reference organ. Abdom Radiol (NY) 44(5):1808–1815. doi:https://doi.org/10.1007/s00261-019-01924-5

    Article  PubMed  Google Scholar 

  27. Ohno N, Yoshida K, Ueda Y, et al (2023) Diffusion-weighted Imaging of the Abdomen during a Single Breath-hold Using Simultaneous-multislice Echo-planar Imaging. Magn Reson Med Sci 22(2):253–262. doi:https://doi.org/10.2463/mrms.mp.2021-0087

    Article  PubMed  Google Scholar 

  28. Cieszanowski A, Podgórska J, Rosiak G, et al (2016) Gd-EOB-DTPA-Enhanced MR Imaging of the Liver: The Effect on T2 Relaxation Times and Apparent Diffusion Coefficient (ADC). Pol J Radiol 81:103–109. Published 2016 Mar 12. doi:https://doi.org/10.12659/PJR.895701

    Article  PubMed  PubMed Central  Google Scholar 

  29. Malayeri AA, El Khouli RH, Zaheer A, et al (2011) Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics 31(6):1773–1791. doi:https://doi.org/10.1148/rg.316115515

    Article  PubMed  Google Scholar 

  30. Lall C, Bura V, Lee TK, et al (2018) Diffusion-weighted imaging in hemorrhagic abdominal and pelvic lesions: restricted diffusion can mimic malignancy. Abdom Radiol (NY) 43(7):1772–1784. doi:https://doi.org/10.1007/s00261-017-1366-2

    Article  PubMed  Google Scholar 

  31. Chen X, Qin L, Pan D, et al (2014) Liver diffusion-weighted MR imaging: reproducibility comparison of ADC measurements obtained with multiple breath-hold, free-breathing, respiratory-triggered, and navigator-triggered techniques. Radiology 271(1):113–125. doi:https://doi.org/10.1148/radiol.13131572

    Article  PubMed  Google Scholar 

  32. Ayuso C, Rimola J, Vilana R, et al (2018) Diagnosis and staging of hepatocellular carcinoma (HCC): current guidelines [published correction appears in Eur J Radiol. 2019;112:229]. Eur J Radiol 101:72–81. doi:https://doi.org/10.1016/j.ejrad.2018.01.025

Download references

Funding

This study was support by National Natural Science Foundation of China (Grant number 82302161), China Postdoctoral Science Foundation (Grant number 2023M732464), Hainan Province Clinical Medical Center and Post-doctoral Station Development Project of Sanya.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Ting Yang, Zheng Ye. Data curation: Ting Yang, Zheng Ye, Shan Yao, Yingyi Wu. Formal analysis: Ting Yang, Zheng Ye. Funding acquisition: Zheng Ye, Bin Song. Methodology: Ting Yang, Zheng Ye. Project administration: Bin Song. Supervision: Bin Song. Validation: Ting Yang, Zheng Ye, Ting Yin. Visualization: Ting Yang. Writing-original draft: Ting Yang. Writing-review & editing: Zheng Ye

Corresponding author

Correspondence to Bin Song.

Ethics declarations

Ethics approval

Approval was obtained from the ethics committee of West China Hospital, Sichuan University. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

Patients signed informed consent regarding publishing their data and photographs.

Competing interests

All authors declare they have no financial interests. All authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Ye, Z., Yao, S. et al. Quantitative diffusion weighted imaging in patients with hepatocellular carcinoma: effects of simultaneous multi-slice acceleration and gadoxetic acid administration. Abdom Radiol 49, 683–693 (2024). https://doi.org/10.1007/s00261-023-04100-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-023-04100-y

Keywords

Navigation