Skip to main content

Advertisement

Log in

Radiomics-based machine learning and deep learning to predict serosal involvement in gallbladder cancer

  • Hepatobiliary
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Objective

Our study aimed to determine whether radiomics models based on contrast-enhanced computed tomography (CECT) have considerable ability to predict serosal involvement in gallbladder cancer (GBC) patients.

Materials and methods

A total of 152 patients diagnosed with GBC were retrospectively enrolled and divided into the serosal involvement group and no serosal involvement group according to paraffin pathology results. The regions of interest (ROIs) in the lesion on all CT images were drawn by two radiologists using ITK-SNAP software (version 3.8.0). A total of 412 features were extracted from the CT images of each patient. The Mann‒Whitney U test was applied to identify features with significant differences between groups. Seven machine learning algorithms and a deep learning model based on fully connected neural networks (f-CNNs) were used for radiomics model construction. The prediction efficacy of the models was evaluated using receiver operating characteristic (ROC) curve analysis.

Results

Through the Mann‒Whitney U test, 75 of the 412 features extracted from the CT images of patients were significantly different between groups (P < 0.05). Among all the algorithms, logistic regression achieved the highest performance with an area under the curve (AUC) of 0.944 (sensitivity 0.889, specificity 0.8); the f-CNN deep learning model had an AUC of 0.916, and the model showed high predictive power for serosal involvement, with a sensitivity of 0.733 and a specificity of 0.801.

Conclusion

Radiomics models based on features derived from CECT showed convincing performances in predicting serosal involvement in GBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schmidt MA, Marcano-Bonilla L, Roberts LR. Gallbladder cancer: epidemiology and genetic risk associations. Chin Clin Oncol. 2019;8(4):31.

    Article  PubMed  Google Scholar 

  2. Jiang W, Zhao B, Li Y, Qi D, Wang D. Modification of the 8th American Joint Committee on Cancer staging system for gallbladder carcinoma to improve prognostic precision. BMC Cancer. 2020;20(1):1129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Feo CF, Ginesu GC, Fancellu A, Perra T, Ninniri C, Deiana G, et al. Current management of incidental gallbladder cancer: A review. Int J Surg. 2022;98:106234.

    Article  PubMed  Google Scholar 

  4. Pilgrim CH, Groeschl RT, Turaga KK, Gamblin TC. Key factors influencing prognosis in relation to gallbladder cancer. Dig Dis Sci. 2013;58(9):2455-62.

    Article  PubMed  CAS  Google Scholar 

  5. Mahul B. Amin SBE, Frederick L. Greene, David R. Byrd, Robert K. Brookland, Mary Kay Washington, Jeffrey E. Gershenwald, Carolyn C. Compton, Kenneth R. Hess, Daniel C. AJCC Cancer Staging Manual. 8th ed. New York: Springer. 2017.

    Google Scholar 

  6. Cherkassky L, D'Angelica M. Gallbladder Cancer: Managing the Incidental Diagnosis. Surg Oncol Clin N Am. 2019;28(4):619-30.

    Article  PubMed  Google Scholar 

  7. Gupta P, Kumar M, Sharma V, Dutta U, Sandhu MS. Evaluation of gallbladder wall thickening: a multimodality imaging approach. Expert Rev Gastroenterol Hepatol. 2020;14(6):463-73.

    Article  PubMed  CAS  Google Scholar 

  8. Sung YS, Park B, Park HJ, Lee SS. Radiomics and deep learning in liver diseases. J Gastroenterol Hepatol. 2021;36(3):561-8.

    Article  PubMed  Google Scholar 

  9. Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin. 2019;69(2):127-57.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mayerhoefer ME, Materka A, Langs G, Haggstrom I, Szczypinski P, Gibbs P, et al. Introduction to Radiomics. J Nucl Med. 2020;61(4):488-95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hatt M, Le Rest CC, Tixier F, Badic B, Schick U, Visvikis D. Radiomics: Data Are Also Images. J Nucl Med. 2019;60(Suppl 2):38S-44S.

    Article  PubMed  Google Scholar 

  12. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749-62.

    Article  PubMed  Google Scholar 

  13. Binczyk F, Prazuch W, Bozek P, Polanska J. Radiomics and artificial intelligence in lung cancer screening. Transl Lung Cancer Res. 2021;10(2):1186-99.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Conti A, Duggento A, Indovina I, Guerrisi M, Toschi N. Radiomics in breast cancer classification and prediction. Semin Cancer Biol. 2021;72:238-50.

    Article  PubMed  CAS  Google Scholar 

  15. Ji GW, Zhang YD, Zhang H, Zhu FP, Wang K, Xia YX, et al. Biliary Tract Cancer at CT: A Radiomics-based Model to Predict Lymph Node Metastasis and Survival Outcomes. Radiology. 2019;290(1):90-8.

    Article  PubMed  Google Scholar 

  16. Tang Y, Yang CM, Su S, Wang WJ, Fan LP, Shu J. Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma. BMC Cancer. 2021;21(1):1268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Qin H, Hu X, Zhang J, Dai H, He Y, Zhao Z, et al. Machine-learning radiomics to predict early recurrence in perihilar cholangiocarcinoma after curative resection. Liver Int. 2021;41(4):837-50.

    Article  PubMed  Google Scholar 

  18. Xue B, Wu S, Zhang M, Hong J, Liu B, Xu N, et al. A radiomic-based model of different contrast-enhanced CT phase for differentiate intrahepatic cholangiocarcinoma from inflammatory mass with hepatolithiasis. Abdom Radiol (NY). 2021;46(8):3835-44.

    Article  PubMed  Google Scholar 

  19. Hundal R, Shaffer EA. Gallbladder cancer: epidemiology and outcome. Clin Epidemiol. 2014;6:99-109.

    PubMed  PubMed Central  Google Scholar 

  20. Sadamoto Y, Kubo H, Harada N, Tanaka M, Eguchi T, Nawata H. Preoperative diagnosis and staging of gallbladder carcinoma by EUS. Gastrointest Endosc. 2003;58(4):536-41.

    Article  PubMed  Google Scholar 

  21. Sugimoto M, Irie H, Takasumi M, Hashimoto M, Oka Y, Takagi T, et al. A simple method for diagnosing gallbladder malignant tumors with subserosa invasion by endoscopic ultrasonography. BMC Cancer. 2021;21(1):288.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hwang J, Kim YK, Choi D, Rhim H, Lee WJ, Hong SS, et al. Gadoxetic acid-enhanced MRI for T-staging of gallbladder carcinoma: emphasis on liver invasion. Br J Radiol. 2014;87(1033):20130608.

    Article  PubMed  CAS  Google Scholar 

  23. Kim SJ, Lee JM, Lee JY, Choi JY, Kim SH, Han JK, et al. Accuracy of preoperative T-staging of gallbladder carcinoma using MDCT. AJR Am J Roentgenol. 2008;190(1):74-80.

    Article  PubMed  Google Scholar 

  24. Kwon YJ, Song KD, Ko SE, Hwang JA, Kim M. Diagnostic performance and inter-observer variability to differentiate between T1- and T2-stage gallbladder cancers using multi-detector row CT. Abdom Radiol (NY). 2022;47(4):1341-50.

    Article  PubMed  Google Scholar 

  25. Liu Z, Wang S, Dong D, Wei J, Fang C, Zhou X, et al. The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics. 2019;9(5):1303-22.

    Article  PubMed  PubMed Central  Google Scholar 

  26. King MJ, Hectors S, Lee KM, Omidele O, Babb JS, Schwartz M, et al. Outcomes assessment in intrahepatic cholangiocarcinoma using qualitative and quantitative imaging features. Cancer Imaging. 2020;20(1):43.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yang C, Huang M, Li S, Chen J, Yang Y, Qin N, et al. Radiomics model of magnetic resonance imaging for predicting pathological grading and lymph node metastases of extrahepatic cholangiocarcinoma. Cancer Lett. 2020;470:1-7.

    Article  PubMed  CAS  Google Scholar 

  28. Park HJ, Park B, Park SY, Choi SH, Rhee H, Park JH, et al. Preoperative prediction of postsurgical outcomes in mass-forming intrahepatic cholangiocarcinoma based on clinical, radiologic, and radiomics features. Eur Radiol. 2021;31(11):8638-48.

    Article  PubMed  Google Scholar 

  29. Lewis S, Peti S, Hectors SJ, King M, Rosen A, Kamath A, et al. Volumetric quantitative histogram analysis using diffusion-weighted magnetic resonance imaging to differentiate HCC from other primary liver cancers. Abdom Radiol (NY). 2019;44(3):912-22.

    Article  PubMed  Google Scholar 

  30. Liu Z, Zhu G, Jiang X, Zhao Y, Zeng H, Jing J, et al. Survival Prediction in Gallbladder Cancer Using CT Based Machine Learning. Front Oncol. 2020;10:604288.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Choi TW, Kim JH, Park SJ, Ahn SJ, Joo I, Han JK. Risk stratification of gallbladder polyps larger than 10 mm using high-resolution ultrasonography and texture analysis. Eur Radiol. 2018;28(1):196-205.

    Article  PubMed  Google Scholar 

  32. Gupta P, Rana P, Ganeshan B, Kalage D, Irrinki S, Gupta V, et al. Computed tomography texture-based radiomics analysis in gallbladder cancer: initial experience. Clin Exp Hepatol. 2021;7(4):406-14.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang L, Zhang Y, Chen Y, Tan J, Wang L, Zhang J, et al. The Performance of a Dual-Energy CT Derived Radiomics Model in Differentiating Serosal Invasion for Advanced Gastric Cancer Patients After Neoadjuvant Chemotherapy: Iodine Map Combined With 120-kV Equivalent Mixed Images. Front Oncol. 2020;10:562945.

    Article  PubMed  Google Scholar 

  34. Ma W, Li W, Wang J, Wu R, Liu C, Feng F, et al. The Clinical Role of Preoperative Serum CA19-9 and Carcinoembryonic Antigen (CEA) Levels in Evaluating the Resectability of Advanced Gallbladder Cancer. Med Sci Monit. 2020;26:e925017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Yamamoto Y, Sugiura T, Okamura Y, Ito T, Ashida R, Ohgi K, et al. Surgical Indication for Advanced Gallbladder Cancer Considering the Optimal Preoperative Carbohydrate Antigen 19-9 Cutoff Value. Dig Surg. 2020;37(5):390-400.

    Article  PubMed  CAS  Google Scholar 

  36. Chen Z, Liu Z, Zhang Y, Wang P, Gao H. Combination of CA19-9 and the Neutrophil-to-Lymphocyte Ratio for the Differential Diagnosis of Gallbladder Carcinoma. Cancer Manag Res. 2020;12:4475-82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was funded by National High Level Hospital Clinical Research Funding (Grant No. 2022-PUMCH-B-003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianlin Han or Xiaodong He.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Han, S., Chen, W. et al. Radiomics-based machine learning and deep learning to predict serosal involvement in gallbladder cancer. Abdom Radiol 49, 3–10 (2024). https://doi.org/10.1007/s00261-023-04029-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-023-04029-2

Keywords

Navigation