Skip to main content

Advertisement

Log in

Noninvasive prenatal screening and maternal malignancy: role of imaging

  • Special Section: Cancer in Pregnancy
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Noninvasive prenatal screening (NIPS) tests for fetal chromosomal anomalies through maternal blood sampling. It is becoming widely available and standard of care for pregnant women in many countries. It is performed in the first trimester of pregnancy, usually between 9 and 12 weeks. Fragments of fetal cell-free deoxyribonucleic acid (DNA) floating in maternal plasma are detected and analyzed by this test to assess for chromosomal aberrations. Similarly, maternal tumor-derived cell-free DNA (ctDNA) released from the tumor cells also circulates in the plasma. Hence, the presence of genomic anomalies originating from maternal tumor-derived DNA may be detected on the NIPS-based fetal risk assessment in pregnant patients. Presence of multiple aneuploidies or autosomal monosomies are the most commonly reported NIPS abnormalities detected with occult maternal malignancies. When such results are received, the search for an occult maternal malignancy begins, in which imaging plays a crucial role. The most commonly detected malignancies via NIPS are leukemia, lymphoma, breast and colon cancers. Ultrasound is a reasonable radiation-free modality for imaging during pregnancy, specially when there are localizing symptoms or findings, such as palpable lumps. While there are no consensus guidelines on the imaging evaluation for these patients, when there are no localizing symptoms or clinically palpable findings, whole body MRI is recommended as the radiation-free modality of choice to search for an occult malignancy. Based on clinical symptoms, practice patterns, and available resources, breast ultrasound, chest radiographs, and targeted ultrasound evaluations can also be performed initially or as a follow-up for MRI findings. CT is reserved for exceptional circumstances due to its higher radiation dose. This article intends to increase awareness of this rare but stressful clinical scenario and guide imaging evaluation for occult malignancy detected via NIPS during pregnancy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jameson JL, Longo DL. Precision medicine--personalized, problematic, and promising. N Engl J Med. 2015;372(23):2229-34.

    Article  CAS  PubMed  Google Scholar 

  2. Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinic - implementation issues and future challenges. Nat Rev Clin Oncol. 2021;18(5):297-312.

    Article  PubMed  Google Scholar 

  3. Montagut C, Vidal J. Liquid Biopsy for Precision Adjuvant Chemotherapy in Colon Cancer. N Engl J Med. 2022;386(24):2330-1.

    Article  CAS  PubMed  Google Scholar 

  4. Alberry MS, Aziz E, Ahmed SR, Abdel-Fattah S. Non invasive prenatal testing (NIPT) for common aneuploidies and beyond. Eur J Obstet Gynecol Reprod Biol. 2021;258:424-9.

    Article  CAS  PubMed  Google Scholar 

  5. Rink BD, Stevens BK, Norton ME. Incidental Detection of Maternal Malignancy by Fetal Cell-Free DNA Screening. Obstet Gynecol. 2022;140(1):121-31.

    Article  CAS  PubMed  Google Scholar 

  6. Jha P, Poder L, Glanc P, Patel-Lippmann K, McGettigan M, Moshiri M, et al. Imaging Cancer in Pregnancy. Radiographics. 2022:220005.

  7. Lenaerts L, Brison N, Maggen C, Vancoillie L, Che H, Vandenberghe P, et al. Comprehensive genome-wide analysis of routine non-invasive test data allows cancer prediction: A single-center retrospective analysis of over 85,000 pregnancies. EClinicalMedicine. 2021;35:100856.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lenaerts L, Van Calsteren K, Che H, Vermeesch JR, Amant F. Pregnant women with confirmed neoplasms should not have noninvasive prenatal testing. Prenat Diagn. 2019;39(12):1162-5.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Burt RW. Familial risk and colorectal cancer. Gastroenterol Clin North Am. 1996;25(4):793-803.

    Article  CAS  PubMed  Google Scholar 

  10. Hui L, Bianchi DW. Fetal fraction and noninvasive prenatal testing: What clinicians need to know. Prenat Diagn. 2020;40(2):155-63.

    Article  PubMed  Google Scholar 

  11. Norton ME, Brar H, Weiss J, Karimi A, Laurent LC, Caughey AB, et al. Non-Invasive Chromosomal Evaluation (NICE) Study: results of a multicenter prospective cohort study for detection of fetal trisomy 21 and trisomy 18. Am J Obstet Gynecol. 2012;207(2):137 e1–8.

  12. Bianchi DW, Chiu RWK. Sequencing of Circulating Cell-free DNA during Pregnancy. N Engl J Med. 2018;379(5):464-73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. American College of O, Gynecologists' Committee on Practice B-O, Committee on G, Society for Maternal-Fetal M. Screening for Fetal Chromosomal Abnormalities: ACOG Practice Bulletin, Number 226. Obstet Gynecol. 2020;136(4):e48-e69.

  14. Dar P, Jacobsson B, MacPherson C, Egbert M, Malone F, Wapner RJ, et al. Cell-free DNA screening for trisomies 21, 18, and 13 in pregnancies at low and high risk for aneuploidy with genetic confirmation. Am J Obstet Gynecol. 2022;227(2):259 e1- e14.

  15. Norton ME, Wapner RJ. Cell-free DNA Analysis for Noninvasive Examination of Trisomy. N Engl J Med. 2015;373(26):2582.

    PubMed  Google Scholar 

  16. van Prooyen Schuurman L, Sistermans EA, Van Opstal D, Henneman L, Bekker MN, Bax CJ, et al. Clinical impact of additional findings detected by genome-wide non-invasive prenatal testing: Follow-up results of the TRIDENT-2 study. Am J Hum Genet. 2022;109(6):1140-52.

    Article  Google Scholar 

  17. Lannoo L, Lenaerts L, Van Den Bogaert K, Che H, Brison N, Devriendt K, et al. Non-invasive prenatal testing suggesting a maternal malignancy: What do we tell the prospective parents in Belgium? Prenat Diagn. 2021;41(10):1264-72.

    Article  CAS  PubMed  Google Scholar 

  18. Hartwig TS, Ambye L, Sorensen S, Jorgensen FS. Discordant non-invasive prenatal testing (NIPT) - a systematic review. Prenat Diagn. 2017;37(6):527-39.

    Article  PubMed  Google Scholar 

  19. Brady P, Brison N, Van Den Bogaert K, de Ravel T, Peeters H, Van Esch H, et al. Clinical implementation of NIPT - technical and biological challenges. Clin Genet. 2016;89(5):523-30.

    Article  CAS  PubMed  Google Scholar 

  20. Dharajiya NG, Grosu DS, Farkas DH, McCullough RM, Almasri E, Sun Y, et al. Incidental Detection of Maternal Neoplasia in Noninvasive Prenatal Testing. Clin Chem. 2018;64(2):329-35.

    Article  CAS  PubMed  Google Scholar 

  21. Amant F, Verheecke M, Wlodarska I, Dehaspe L, Brady P, Brison N, et al. Presymptomatic Identification of Cancers in Pregnant Women During Noninvasive Prenatal Testing. JAMA Oncol. 2015;1(6):814-9.

    Article  PubMed  Google Scholar 

  22. Bianchi DW, Chudova D, Sehnert AJ, Bhatt S, Murray K, Prosen TL, et al. Noninvasive Prenatal Testing and Incidental Detection of Occult Maternal Malignancies. JAMA. 2015;314(2):162-9.

    Article  CAS  PubMed  Google Scholar 

  23. Snyder HL, Curnow KJ, Bhatt S, Bianchi DW. Follow-up of multiple aneuploidies and single monosomies detected by noninvasive prenatal testing: implications for management and counseling. Prenat Diagn. 2016;36(3):203-9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Heesterbeek CJ, Aukema SM, Galjaard RH, Boon EMJ, Srebniak MI, Bouman K, et al. Noninvasive Prenatal Test Results Indicative of Maternal Malignancies: A Nationwide Genetic and Clinical Follow-Up Study. J Clin Oncol. 2022;40(22):2426-35.

    Article  PubMed  Google Scholar 

  25. van der Meij KRM, Sistermans EA, Macville MVE, Stevens SJC, Bax CJ, Bekker MN, et al. TRIDENT-2: National Implementation of Genome-wide Non-invasive Prenatal Testing as a First-Tier Screening Test in the Netherlands. Am J Hum Genet. 2019;105(6):1091-101.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ji X, Li J, Huang Y, Sung PL, Yuan Y, Liu Q, et al. Identifying occult maternal malignancies from 1.93 million pregnant women undergoing noninvasive prenatal screening tests. Genet Med. 2019;21(10):2293–302.

  27. Maggen C, Wolters V, Cardonick E, Fumagalli M, Halaska MJ, Lok CAR, et al. Pregnancy and Cancer: the INCIP Project. Curr Oncol Rep. 2020;22(2):17.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sanchez-Herrero E, Serna-Blasco R, Robado de Lope L, Gonzalez-Rumayor V, Romero A, Provencio M. Circulating Tumor DNA as a Cancer Biomarker: An Overview of Biological Features and Factors That may Impact on ctDNA Analysis. Front Oncol. 2022;12:943253.

  29. Cai X, Janku F, Zhan Q, Fan JB. Accessing Genetic Information with Liquid Biopsies. Trends Genet. 2015;31(10):564-75.

    Article  CAS  PubMed  Google Scholar 

  30. Carlson LM, Hardisty E, Coombs CC, Vora NL. Maternal Malignancy Evaluation After Discordant Cell-Free DNA Results. Obstet Gynecol. 2018;131(3):464-8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dow E, Freimund A, Smith K, Hicks RJ, Jurcevic P, Shackleton M, et al. Cancer Diagnoses Following Abnormal Noninvasive Prenatal Testing: A Case Series, Literature Review, and Proposed Management Model. JCO Precis Oncol. 2021;5:1001-12.

    Article  PubMed  Google Scholar 

  32. Mardy AH, Norton ME. Diagnostic testing after positive results on cell free DNA screening: CVS or Amnio? Prenat Diagn. 2021;41(10):1249-54.

    Article  CAS  PubMed  Google Scholar 

  33. ACR-SPR Practice Parameter for Imaging Pregnant or Potentially Pregnant Adolescents and Women with Ionizing Radiation 2018 [Available from: https://www.acr.org/-/media/acr/files/practice-parameters/pregnant-pts.pdf.

  34. Han SN, Amant F, Michielsen K, De Keyzer F, Fieuws S, Van Calsteren K, et al. Feasibility of whole-body diffusion-weighted MRI for detection of primary tumour, nodal and distant metastases in women with cancer during pregnancy: a pilot study. Eur Radiol. 2018;28(5):1862-74.

    Article  PubMed  Google Scholar 

  35. Ray JG, Vermeulen MJ, Bharatha A, Montanera WJ, Park AL. Association Between MRI Exposure During Pregnancy and Fetal and Childhood Outcomes. JAMA. 2016;316(9):952-61.

    Article  PubMed  Google Scholar 

  36. Incidental Detection of Maternal Neoplasia Through Non-invasive Cell-Free DNA Analysis (IDENTIFY), a Natural History Study [Available from: https://clinicalstudies.info.nih.gov/protocoldetails.aspx?id=19-C-0132&&query=.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Jha.

Ethics declarations

Conflict of interest

Authors do not have any conflict of interest with the presented material.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, P., Lenaerts, L., Vermeesch, J. et al. Noninvasive prenatal screening and maternal malignancy: role of imaging. Abdom Radiol 48, 1590–1598 (2023). https://doi.org/10.1007/s00261-023-03913-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-023-03913-1

Keywords

Navigation