Skip to main content

Advertisement

Log in

MRI radiomics signature to predict lymph node metastasis after neoadjuvant chemoradiation therapy in locally advanced rectal cancer

  • Hollow Organ GI
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To investigative the performance of MRI-radiomics analysis derived from T2WI and apparent diffusion coefficients (ADC) images before and after neoadjuvant chemoradiation therapy (nCRT) separately or simultaneously for predicting post-nCRT lymph node status in patients with locally advanced rectal cancer (LARC).

Materials and Methods

Eighty-three patients (training cohort, n = 57; validation cohort, n = 26) with LARC between June 2017 and December 2022 were retrospectively enrolled. All the radiomics features were extracted from volume of interest on T2WI and ADC images from baseline and post-nCRT MRI. Delta-radiomics features were defined as the difference between radiomics features before and after nCRT. Seven clinical-radiomics models were constructed by combining the most predictive radiomics signatures and clinical parameters selected from support vector machine. Receiver operating characteristic curve (ROC) was used to evaluate the performance of models. The optimum model-based LNM was applied to assess 5-years disease-free survival (DFS) using Kaplan–Meier analysis. The end point was clinical or radiological locoregional recurrence or distant metastasis during postoperative follow-up.

Results

Clinical-deltaADC radiomics combined model presented good performance for predicting post-CRT LNM in the training (AUC = 0.895,95%CI:0.838–0.953) and validation cohort (AUC = 0.900,95%CI:0.771–1.000). Clinical-deltaADC radiomics-postT2WI radiomics combined model also showed good performances (AUC = 0.913,95%CI:0.838–0.953) in the training and (AUC = 0.912,95%CI:0.771–1.000) validation cohort. As for subgroup analysis, clinical-deltaADC radiomics combined model showed good performance predicting LNM in ypT0-T2 (AUC = 0.827;95%CI:0.649–1.000) and ypT3-T4 stage (AUC = 0.934;95%CI:0.864–1.000). In ypT0-T2 stage, clinical-deltaADC radiomics combined model-based LNM could assess 5-years DFS (P = 0.030).

Conclusion

Clinical-deltaADC radiomics combined model could predict post-nCRT LNM, and this combined model-based LNM was associated with 5-years DFS in ypT0-T2 stage.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

nCRT:

Neoadjuvant chemoradiation therapy

LARC:

Locally advanced rectal cancer

LN:

Lymph node

LNM:

Lymph node metastases

ADC:

Apparent diffusion coefficient

DWI:

Diffusion weighted imaging

AUC:

Areas under the receiver operating characteristic curve

ROC:

Receiver operating characteristic

EMVI:

Extramural vascular invasion

MRF:

Mesorectal fascia

CI:

Confidence interval

CEA:

Carcinoembryonic antigen

CA199:

Carbohydrate antigen 199

IDBMP:

Invasion distance beyond the muscularis propria

SDMPT:

Shortest distance between the mesorectal fascia and the outer edge of the tumor extension

SVM:

Support vector machine

RBF:

Radial basis function

ROIs:

Regions of interest

ICC:

Intraclass correlation coefficient

DCA:

Decision curve analysis

NRI:

Continuous net reclassification improvement

IDI:

Integrated discrimination improvement

References

  1. Kapiteijn E, Marijnen CA, Nagtegaal ID, Putter H, Steup WH, Wiggers T, Rutten HJ, Pahlman L, Glimelius B, van Krieken JH, Leer JW, van de Velde CJ. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N Engl J Med. 2001;345(9):638-46.

    Article  CAS  PubMed  Google Scholar 

  2. Sauer R, Becker H, Hohenberger W, Rödel C, Wittekind C, Fietkau R, Martus P, Tschmelitsch J, Hager E, Hess CF, Karstens JH, Liersch T, Schmidberger H, Raab R. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med. 2004;351(17):1731-40.

    Article  CAS  PubMed  Google Scholar 

  3. Bosset JF, Collette L, Calais G, Mineur L, Maingon P, Radosevic-Jelic L, Daban A, Bardet E, Beny A, Ollier JC; EORTC Radiotherapy Group Trial 22921. Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med. 2006;355(11):1114–23.doi:https://doi.org/10.1056/NEJMoa060829.

  4. Hindson J. Organ preservation versus radical surgery for early-stage rectal cancer. Nat Rev Gastroenterol Hepatol. 2021;18(2):82.

    PubMed  Google Scholar 

  5. Barbaro B, Vitale R, Leccisotti L, Vecchio FM, Santoro L, Valentini V, Coco C, Pacelli F, Crucitti A, Persiani R, Bonomo L. Restaging locally advanced rectal cancer with MR imaging after chemoradiation therapy. Radiographics. 2010 ;30(3):699-716.

    Article  PubMed  Google Scholar 

  6. Bedrosian I, Rodriguez-Bigas MA, Feig B, Hunt KK, Ellis L, Curley SA, Vauthey JN, Delclos M, Crane C, Janjan N, Skibber JM. Predicting the node-negative mesorectum after preoperative chemoradiation for locally advanced rectal carcinoma. J Gastrointest Surg. 2004;8(1):56-62.

    Article  PubMed  Google Scholar 

  7. Yeo SG, Kim DY, Kim TH, Chang HJ, Oh JH, Park W, Choi DH, Nam H, Kim JS, Cho MJ, Kim JH, Park JH, Kang MK, Koom WS, Kim JS, Nam TK, Chie EK, Kim JS, Lee KJ. Pathologic complete response of primary tumor following preoperative chemoradiotherapy for locally advanced rectal cancer: long-term outcomes and prognostic significance of pathologic nodal status (KROG 09-01). Ann Surg. 2010;252(6):998-1004.

    Article  PubMed  Google Scholar 

  8. Akiyoshi T, Matsueda K, Hiratsuka M, Unno T, Nagata J, Nagasaki T, Konishi T, Fujimoto Y, Nagayama S, Fukunaga Y, Ueno M. Indications for Lateral Pelvic Lymph Node Dissection Based on Magnetic Resonance Imaging Before and After Preoperative Chemoradiotherapy in Patients with Advanced Low-Rectal Cancer. Ann Surg Oncol. 2015;22 Suppl 3:S614-20.

    Article  PubMed  Google Scholar 

  9. Ryu KH, Kim SH, Yoon JH, Lee Y, Paik JH, Lim YJ, Lee KH. Diffusion-weighted imaging for evaluating lymph node eradication after neoadjuvant chemoradiation therapy in locally advanced rectal cancer. Acta Radiol. 2016;57(2):133-41.

    Article  PubMed  Google Scholar 

  10. Koh DM, Chau I, Tait D, Wotherspoon A, Cunningham D, Brown G. Evaluating mesorectal lymph nodes in rectal cancer before and after neoadjuvant chemoradiation using thin-section T2-weighted magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2008;71(2):456-61.

    Article  PubMed  Google Scholar 

  11. Yang L, Liu D, Fang X, Wang Z, Xing Y, Ma L, Wu B. Rectal cancer: can T2WI histogram of the primary tumor help predict the existence of lymph node metastasis?. Eur Radiol. 2019;29(12):6469-76.

    Article  PubMed  Google Scholar 

  12. Liu L, Liu Y, Xu L, Li Z, Lv H, Dong N, Li W, Yang Z, Wang Z, Jin E. Application of texture analysis based on apparent diffusion coefficient maps in discriminating different stages of rectal cancer. J Magn Reson Imaging. 2017;45(6):1798-08.

    Article  PubMed  Google Scholar 

  13. Zhu H, Zhang X, Li X, Shi Y, Zhu H, Sun Y. Prediction of pathological nodal stage of locally advanced rectal cancer by collective features of multiple lymph nodes in magnetic resonance images before and after neoadjuvant chemoradiotherapy. Chin J Cancer Res. 2019;31(6):984-92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nakanishi R, Akiyoshi T, Toda S, Murakami Y, Taguchi S, Oba K, Hanaoka Y, Nagasaki T, Yamaguchi T, Konishi T, Matoba S, Ueno M, Fukunaga Y, Kuroyanagi H. Radiomics Approach Outperforms Diameter Criteria for Predicting Pathological Lateral Lymph Node Metastasis After Neoadjuvant (Chemo)Radiotherapy in Advanced Low Rectal Cancer. Ann Surg Oncol. 2020;27(11):4273-83.

    Article  PubMed  Google Scholar 

  15. Seo N, Kim H, Cho MS, Lim JS. Response Assessment with MRI after Chemoradiotherapy in Rectal Cancer: Current Evidences. Korean J Radiol. 2019 ;20(7):1003-1018.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lambregts DM, Heijnen LA, Maas M, Rutten IJ, Martens MH, Backes WH, Riedl RG, Bakers FC, Cappendijk VC, Beets GL, Beets-Tan RG. Gadofosveset-enhanced MRI for the assessment of rectal cancer lymph nodes: predictive criteria. Abdom Imaging. 2013;38(4):720-7.

    Article  PubMed  Google Scholar 

  17. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts HJWL. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017;77(21):e104-7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wan L, Peng W, Zou S, Ye F, Geng Y, Ouyang H, Zhao X, Zhang H. MRI-based delta-radiomics are predictive of pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Acad Radiol. 2021;28 Suppl 1:S95-S104.

    Article  PubMed  Google Scholar 

  19. Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research [published correction appears in J Chiropr Med. 2017 Dec;16(4):346]. J Chiropr Med. 2016;15(2):155–63.

  20. Zhou X, Yi Y, Liu Z, Zhou Z, Lai B, Sun K, Li L, Huang L, Feng Y, Cao W, Tian J. Radiomics-Based Preoperative Prediction of Lymph Node Status Following Neoadjuvant Therapy in Locally Advanced Rectal Cancer. Front Oncol. 2020;10:604.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fave X, Zhang L, Yang J, Mackin D, Balter P, Gomez D, Followill D, Jones AK, Stingo F, Liao Z, Mohan R, Court L. Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer. Sci Rep. 2017;7(1):588.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Goh V, Ganeshan B, Nathan P, Juttla JK, Vinayan A, Miles KA. Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology. 2011;261(1):165-71.

    Article  PubMed  Google Scholar 

  23. Boldrini L, Cusumano D, Chiloiro G, Casà C, Masciocchi C, Lenkowicz J, Cellini F, Dinapoli N, Azario L, Teodoli S, Gambacorta MA, De Spirito M, Valentini V. Delta radiomics for rectal cancer response prediction with hybrid 0.35 T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach. Radiol Med. 2019;124(2):145–53.

  24. Jeon SH, Song C, Chie EK, Kim B, Kim YH, Chang W, Lee YJ, Chung JH, Chung JB, Lee KW, Kang SB, Kim JS. Delta-radiomics signature predicts treatment outcomes after preoperative chemoradiotherapy and surgery in rectal cancer. Radiat Oncol. 2019;14(1):43.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bulens P, Couwenberg A, Intven M, Debucquoy A, Vandecaveye V, Van Cutsem E, D'Hoore A, Wolthuis A, Mukherjee P, Gevaert O, Haustermans K. Predicting the tumor response to chemoradiotherapy for rectal cancer: Model development and external validation using MRI radiomics. Radiother Oncol. 2020;142:246-52.

    Article  CAS  PubMed  Google Scholar 

  26. O'Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Jackson A. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res. 2015;21(2):249-57.

    Article  CAS  PubMed  Google Scholar 

  27. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546-58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Crombé A, Périer C, Kind M, De Senneville BD, Le Loarer F, Italiano A, Buy X, Saut O. T2 -based MRI Delta-radiomics improve response prediction in soft-tissue sarcomas treated by neoadjuvant chemotherapy. J Magn Reson Imaging. 2019;50(2):497-10.

    Article  PubMed  Google Scholar 

  29. Lin P, Yang PF, Chen S, Shao YY, Xu L, Wu Y, Teng W, Zhou XZ, Li BH, Luo C, Xu LM, Huang M, Niu TY, Ye ZM. A Delta-radiomics model for preoperative evaluation of Neoadjuvant chemotherapy response in high-grade osteosarcoma. Cancer Imaging. 2020;20(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kouri M, Pyrhönen S, Kuusela P. Elevated CA19-9 as the most significant prognostic factor in advanced colorectal carcinoma. J Surg Oncol. 1992;49(2):78-85.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None

Funding

This work was supported by Sichuan Science and Technology Program (Grant No. 23ZDYF1685) and the Key Research Project of Sichuan Province (Grant No. 2022YFS0249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Informed consent

This study was approved by the institutional review board and requirement to obtain written informed consent was waived because of the retrospective nature of the study.

Consent for publications

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Z., Pu, H., Chen, Xl. et al. MRI radiomics signature to predict lymph node metastasis after neoadjuvant chemoradiation therapy in locally advanced rectal cancer. Abdom Radiol 48, 2270–2283 (2023). https://doi.org/10.1007/s00261-023-03910-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-023-03910-4

Keywords

Navigation