Skip to main content

Reference values for 4D flow magnetic resonance imaging of the portal venous system

Abstract

Purpose

The purpose of this work was to establish normal reference values for 4D flow MRI-derived flow, velocity, and vessel diameters, and to define characteristic flow patterns in the portal venous system of healthy adult subjects.

Methods

For this retrospective study, we screened all available 4D flow MRI exams of the upper abdomen in healthy adults acquired at our institution between 2012 and 2022 at either 1.5 T or 3.0 T MRI after ≥ 5 h fasting. Flow, velocity, and effective diameter were quantified in the 8 planes in the portal venous system (splenic vein, superior mesenteric vein, main, right, and left portal veins). Vessel delineation was manually adjusted over time. Reference ranges for were defined as the mean ± 2 standard deviations. Three readers noted helical and vortical flow on time-resolved pathline visualizations. Conservation of mass flow analysis was performed for quality assurance.

Results

We included 44 healthy subjects (26 female, 18–74 years) in the analysis. We report reference values for mean and peak flow, mean velocity, and vessel diameter in the healthy portal vein using 4D flow MRI. Normal flow patterns in the portal vein included faint helical (66%) or linear flow (34%). Conservation of mass analysis demonstrated a relative error of 1.1 ± 4.6% standard deviation (SD) at the splenomesenteric confluence and − 1.4 ± 4.1% SD at the portal bifurcation.

Conclusion

We have reported normal hemodynamic values that are necessary baseline data for emerging clinical applications of 4D flow MRI in the portal venous system. Results are consistent with previously published values from smaller cohorts.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Dyverfeldt P, Bissell M, Barker AJ, Bolger AF, Carlhall CJ, Ebbers T, et al. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson. 2015;17:72. https://doi.org/10.1186/s12968-015-0174-5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Oechtering TH, Roberts GS, Panagiotopoulos N, Wieben O, Reeder SB, Roldán-Alzate A. Clinical Applications of 4D Flow MRI in the Portal Venous System. Magn Reson Med Sci. 2022. https://doi.org/10.2463/mrms.rev.2021-0105.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Frydrychowicz A, Roldan-Alzate A, Winslow E, Consigny D, Campo CA, Motosugi U, et al. Comparison of radial 4D Flow-MRI with perivascular ultrasound to quantify blood flow in the abdomen and introduction of a porcine model of pre-hepatic portal hypertension. Eur Radiol. 2017;27(12):5316-24. https://doi.org/10.1007/s00330-017-4862-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Motosugi U, Roldán-Alzate A, Bannas P, Said A, Kelly S, Zea R, et al. Four-dimensional Flow MRI as a Marker for Risk Stratification of Gastroesophageal Varices in Patients with Liver Cirrhosis. Radiology. 2019;290(1):101-7. https://doi.org/10.1148/radiol.2018180230.

    Article  PubMed  Google Scholar 

  5. Roberts GS, François CJ, Starekova J, Roldán-Alzate A, Wieben O. Non-invasive assessment of mesenteric hemodynamics in patients with suspected chronic mesenteric ischemia using 4D flow MRI. Abdom Radiol (NY). 2021. https://doi.org/10.1007/s00261-020-02900-0.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Roldan-Alzate A, Frydrychowicz A, Said A, Johnson KM, Francois CJ, Wieben O, et al. Impaired regulation of portal venous flow in response to a meal challenge as quantified by 4D flow MRI. J Magn Reson Imaging. 2015;42(4):1009-17. https://doi.org/10.1002/jmri.24886.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Keller EJ, Kulik L, Stankovic Z, Lewandowski RJ, Salem R, Carr JC, et al. JOURNAL CLUB: Four-Dimensional Flow MRI-Based Splenic Flow Index for Predicting Cirrhosis-Associated Hypersplenism. AJR American journal of roentgenology. 2017;209(1):46-54. https://doi.org/10.2214/AJR.16.17620.

    Article  PubMed  Google Scholar 

  8. Oechtering TH, Roberts GS, Panagiotopoulos N, Wieben O, Reeder SB, Roldan-Alzate A. Clinical Applications of 4D Flow MRI in the Portal Venous System. Magn Reson Med Sci. 2022. https://doi.org/10.2463/mrms.rev.2021-0105.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Krishnamurthy R, Bahouth SM, Muthupillai R. 4D Contrast-enhanced MR Angiography with the Keyhole Technique in Children: Technique and Clinical Applications. Radiographics. 2016;36(2):523-37. https://doi.org/10.1148/rg.2016150106.

    Article  PubMed  Google Scholar 

  10. Owen JW, Saad NE, Foster G, Fowler KJ. The Feasibility of Using Volumetric Phase-Contrast MR Imaging (4D Flow) to Assess for Transjugular Intrahepatic Portosystemic Shunt Dysfunction. Journal of vascular and interventional radiology : JVIR. 2018;29(12):1717-24. https://doi.org/10.1016/j.jvir.2018.07.022.

    Article  PubMed  Google Scholar 

  11. Stankovic Z, Rossle M, Euringer W, Schultheiss M, Salem R, Barker A, et al. Effect of TIPS placement on portal and splanchnic arterial blood flow in 4-dimensional flow MRI. Eur Radiol. 2015;25(9):2634-40. https://doi.org/10.1007/s00330-015-3663-x.

    Article  PubMed  Google Scholar 

  12. Motosugi U, Roldan-Alzate A, Bannas P, Said A, Kelly S, Zea R, et al. Four-dimensional Flow MRI as a Marker for Risk Stratification of Gastroesophageal Varices in Patients with Liver Cirrhosis. Radiology. 2019;290(1):101-7. https://doi.org/10.1148/radiol.2018180230.

    Article  PubMed  Google Scholar 

  13. Bannas P, Roldan-Alzate A, Johnson KM, Woods MA, Ozkan O, Motosugi U, et al. Longitudinal Monitoring of Hepatic Blood Flow before and after TIPS by Using 4D-Flow MR Imaging. Radiology. 2016;281(2):574-82. https://doi.org/10.1148/radiol.2016152247.

    Article  PubMed  Google Scholar 

  14. Roldán-Alzate A, Campo CA, Mao L, Said A, Wieben O, Reeder SB. Characterization of mesenteric and portal hemodynamics using 4D flow MRI: the effects of meals and diurnal variation. Abdom Radiol (NY). 2022;47(6):2106-14. https://doi.org/10.1007/s00261-022-03513-5.

    Article  PubMed  Google Scholar 

  15. Brunsing RL, Brown D, Almahoud H, Kono Y, Loomba R, Vodkin I, et al. Quantification of the Hemodynamic Changes of Cirrhosis with Free-Breathing Self-Navigated MRI. J Magn Reson Imaging. 2021;53(5):1410-21. https://doi.org/10.1002/jmri.27488.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stankovic Z, Csatari Z, Deibert P, Euringer W, Jung B, Kreisel W, et al. A feasibility study to evaluate splanchnic arterial and venous hemodynamics by flow-sensitive 4D MRI compared with Doppler ultrasound in patients with cirrhosis and controls. Eur J Gastroenterol Hepatol. 2013;25(6):669-75. https://doi.org/10.1097/MEG.0b013e32835e1297.

    Article  PubMed  Google Scholar 

  17. Roldan-Alzate A, Frydrychowicz A, Niespodzany E, Landgraf BR, Johnson KM, Wieben O, et al. In vivo validation of 4D flow MRI for assessing the hemodynamics of portal hypertension. J Magn Reson Imaging. 2013;37(5):1100-8. https://doi.org/10.1002/jmri.23906.

    Article  PubMed  Google Scholar 

  18. Rutkowski DR, Medero R, Garcia FJ, Roldán-Alzate A. MRI-based modeling of spleno-mesenteric confluence flow. J Biomech. 2019;88:95-103. https://doi.org/10.1016/j.jbiomech.2019.03.025.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stankovic Z, Csatari Z, Deibert P, Euringer W, Blanke P, Kreisel W, et al. Normal and altered three-dimensional portal venous hemodynamics in patients with liver cirrhosis. Radiology. 2012;262(3):862-73. https://doi.org/10.1148/radiol.11110127.

    Article  PubMed  Google Scholar 

  20. Iranpour P, Lall C, Houshyar R, Helmy M, Yang A, Choi JI, et al. Altered Doppler flow patterns in cirrhosis patients: an overview. Ultrasonography. 2016;35(1):3-12. https://doi.org/10.14366/usg.15020.

    Article  PubMed  Google Scholar 

  21. Sugimoto H, Kaneko T, Nakao A. Poststenotic dilatation and helical flow in the umbilical portion of the portal vein. J Hepatol. 2002;36(5):704. https://doi.org/10.1016/s0168-8278(02)00053-3.

    Article  PubMed  Google Scholar 

  22. Rosenthal SJ, Harrison LA, Baxter KG, Wetzel LH, Cox GG, Batnitzky S. Doppler US of helical flow in the portal vein. Radiographics. 1995;15(5):1103-11. https://doi.org/10.1148/radiographics.15.5.7501853.

    Article  CAS  PubMed  Google Scholar 

  23. Stankovic Z, Frydrychowicz A, Csatari Z, Panther E, Deibert P, Euringer W, et al. MR-based visualization and quantification of three-dimensional flow characteristics in the portal venous system. J Magn Reson Imaging. 2010;32(2):466-75. https://doi.org/10.1002/jmri.22248.

    Article  PubMed  Google Scholar 

  24. Garcia-Tsao G, Groszmann RJ, Fisher RL, Conn HO, Atterbury CE, Glickman M. Portal pressure, presence of gastroesophageal varices and variceal bleeding. Hepatology. 1985;5(3):419-24. https://doi.org/10.1002/hep.1840050313.

    Article  CAS  PubMed  Google Scholar 

  25. Garcia-Tsao G, Abraldes JG, Berzigotti A, Bosch J. Portal hypertensive bleeding in cirrhosis: Risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the study of liver diseases. Hepatology. 2017;65(1):310-35. https://doi.org/10.1002/hep.28906.

    Article  PubMed  Google Scholar 

  26. Gaiani S, Bolondi L, Li Bassi S, Santi V, Zironi G, Barbara L. Effect of meal on portal hemodynamics in healthy humans and in patients with chronic liver disease. Hepatology. 1989;9(6):815-9. https://doi.org/10.1002/hep.1840090604.

    Article  CAS  PubMed  Google Scholar 

  27. Moriyasu F, Ban N, Nishida O, Nakamura T, Miyake T, Uchino H, et al. Clinical application of an ultrasonic duplex system in the quantitative measurement of portal blood flow. J Clin Ultrasound. 1986;14(8):579-88. https://doi.org/10.1002/jcu.1870140802.

    Article  CAS  PubMed  Google Scholar 

  28. Landgraf BR, Johnson KM, Roldán-Alzate A, Francois CJ, Wieben O, Reeder SB. Effect of temporal resolution on 4D flow MRI in the portal circulation. J Magn Reson Imaging. 2014;39(4):819-26. https://doi.org/10.1002/jmri.24233.

    Article  PubMed  Google Scholar 

  29. Walker PG, Cranney GB, Scheidegger MB, Waseleski G, Pohost GM, Yoganathan AP. Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging. 1993;3(3):521-30. https://doi.org/10.1002/jmri.1880030315.

    Article  CAS  PubMed  Google Scholar 

  30. Liu J, Redmond MJ, Brodsky EK, Alexander AL, Lu A, Thornton FJ, et al. Generation and visualization of four-dimensional MR angiography data using an undersampled 3-D projection trajectory. IEEE Trans Med Imaging. 2006;25(2):148-57. https://doi.org/10.1109/tmi.2005.861706.

    Article  CAS  PubMed  Google Scholar 

  31. Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M. Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med. 2008;60(5):1218-31. https://doi.org/10.1002/mrm.21778.

    Article  CAS  PubMed  Google Scholar 

  32. Oechtering TH, Sieren MM, Hunold P, Hennemuth A, Huellebrand M, Scharfschwerdt M, et al. Time-resolved 3-dimensional magnetic resonance phase contrast imaging (4D Flow MRI) reveals altered blood flow patterns in the ascending aorta of patients with valve-sparing aortic root replacement. J Thorac Cardiovasc Surg. 2020;159(3):798-810.e1. https://doi.org/10.1016/j.jtcvs.2019.02.127.

    Article  PubMed  Google Scholar 

  33. Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation. 1993;88(5 Pt 1):2235-47. https://doi.org/10.1161/01.cir.88.5.2235.

    Article  CAS  PubMed  Google Scholar 

  34. Horn PS, Pesce AJ, Copeland BE. A robust approach to reference interval estimation and evaluation. Clin Chem. 1998;44(3):622-31.

    Article  CAS  PubMed  Google Scholar 

  35. Kempfert J, Van Linden A, Lehmkuhl L, Rastan AJ, Holzhey D, Blumenstein J, et al. Aortic annulus sizing: echocardiographic versus computed tomography derived measurements in comparison with direct surgical sizing. Eur J Cardiothorac Surg. 2012;42(4):627-33. https://doi.org/10.1093/ejcts/ezs064.

    Article  PubMed  Google Scholar 

  36. Vasanawala SS, Nguyen KL, Hope MD, Bridges MD, Hope TA, Reeder SB, et al. Safety and technique of ferumoxytol administration for MRI. Magn Reson Med. 2016;75(5):2107-11. https://doi.org/10.1002/mrm.26151.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wentland AL, Grist TM, Wieben O. Repeatability and internal consistency of abdominal 2D and 4D phase contrast MR flow measurements. Acad Radiol. 2013;20(6):699-704. https://doi.org/10.1016/j.acra.2012.12.019.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Santini F, Pansini M, Hrabak-Paar M, Yates D, Langenickel TH, Bremerich J, et al. On the optimal temporal resolution for phase contrast cardiovascular magnetic resonance imaging: establishment of baseline values. J Cardiovasc Magn Reson. 2020;22(1):72. https://doi.org/10.1186/s12968-020-00669-1.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Muthusami P, Yoo SJ, Chaturvedi R, Gill N, Windram J, Schantz D, et al. Splanchnic, Thoracoabdominal, and Cerebral Blood Flow Volumes in Healthy Children and Young Adults in Fasting and Postprandial States: Determining Reference Ranges by Using Phase-Contrast MR Imaging. Radiology. 2017;285(1):231-41. https://doi.org/10.1148/radiol.2017162114.

    Article  PubMed  Google Scholar 

  40. Parekh K, Markl M, Rose M, Schnell S, Popescu A, Rigsby CK. 4D flow MR imaging of the portal venous system: a feasibility study in children. Eur Radiol. 2017;27(2):832-40. https://doi.org/10.1007/s00330-016-4396-1.

    Article  PubMed  Google Scholar 

  41. Nishida O, Moriyasu F, Nakamura T, Ban N, Miura K, Sakai M, et al. Interrelationship between splenic and superior mesenteric venous circulation manifested by transient splenic arterial occlusion using a balloon catheter. Hepatology. 1987;7(3):442-6. https://doi.org/10.1002/hep.1840070305.

    Article  CAS  PubMed  Google Scholar 

  42. Yzet T, Bouzerar R, Allart JD, Demuynck F, Legallais C, Robert B, et al. Hepatic vascular flow measurements by phase contrast MRI and doppler echography: a comparative and reproducibility study. J Magn Reson Imaging. 2010;31(3):579-88. https://doi.org/10.1002/jmri.22079.

    Article  PubMed  Google Scholar 

  43. Mise Y, Satou S, Shindoh J, Conrad C, Aoki T, Hasegawa K, et al. Three-dimensional volumetry in 107 normal livers reveals clinically relevant inter-segment variation in size. HPB (Oxford). 2014;16(5):439-47. https://doi.org/10.1111/hpb.12157.

    Article  PubMed  Google Scholar 

  44. Stamm ER, Meier JM, Pokharel SS, Clark T, Glueck DH, Lind KE, et al. Normal main portal vein diameter measured on CT is larger than the widely referenced upper limit of 13 mm. Abdom Radiol (NY). 2016;41(10):1931-6. https://doi.org/10.1007/s00261-016-0785-9.

    Article  PubMed  Google Scholar 

  45. Stankovic Z, Jung B, Collins J, Russe MF, Carr J, Euringer W, et al. Reproducibility study of four-dimensional flow MRI of arterial and portal venous liver hemodynamics: influence of spatio-temporal resolution. Magn Reson Med. 2014;72(2):477-84. https://doi.org/10.1002/mrm.24939.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the NIH (R01 DK125783) for supporting this study, as well as GE Healthcare who provides research support to the University of Wisconsin. Dr. Reeder is a Fred Lee Sr. Endowed Chair of Radiology. Dr. Oechtering receives funding from the German Research Foundation (OE 746/1-1).

Funding

Funding was provided by National Institutes of Health (R01 DK125783) and Deutsche Forschungsgemeinschaft (OE 746/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thekla H. Oechtering.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

This retrospective study received approval from the local Institutional Review Board.

Informed consent

Informed consent was waived because data were deidentified.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, A., Roberts, G.S., Roldán-Alzate, A. et al. Reference values for 4D flow magnetic resonance imaging of the portal venous system. Abdom Radiol 48, 2049–2059 (2023). https://doi.org/10.1007/s00261-023-03892-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-023-03892-3

Keywords