Skip to main content

Advertisement

Log in

Transplant renal artery stenosis: utilization of machine learning to identify ancillary sonographic and doppler parameters to predict stenosis in patients with graft dysfunction

  • Kidneys, Ureters, Bladder, Retroperitoneum
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To determine if ancillary sonographic and Doppler parameters can be used to predict transplant renal artery stenosis in patients with renal graft dysfunction.

Materials and methods

IRB-approved, HIPAA-compliant retrospective study included 80 renal transplant patients who had renal US followed by renal angiogram between January 2018 and December 2019. A consensus read of two radiologists recorded these parameters: peak systolic velocity, persistence of elevated velocity, grayscale narrowing, parvus tardus, delayed systolic upstroke, angle of the systolic peak (SP angle), and aliasing. Univariate analysis using t-test or chi-square was performed to determine differences between patients with and without stenosis. P values under 0.05 were deemed statistically significant. We used machine learning algorithms to determine parameters that could better predict the presence of stenosis. The algorithms included logistic regression, random forest, imbalanced random forest, boosting, and CART. All 80 cases were split between training and testing using stratified sampling using a 75:25 split.

Results

We found a statistically significant difference in grayscale narrowing (p = 0.0010), delayed systolic upstroke (p = 0.0002), SP angle (p = 0.0005), and aliasing (p = 0.0024) between the two groups. No significant difference was found for an elevated peak systolic velocity (p = 0.1684). The imbalanced random forest (IRF) model was selected for improved accuracy, sensitivity, and specificity. Specificity, sensitivity, AUC, and normalized Brier score for the IRF model using all parameters were 73%, 81%, 0.82, and 69 in the training set, and 78%, 58%, 0.78, and 80 in the testing set. VIMP assessment showed that the combination of variables that resulted in the most significant change of the training set performance was that of grayscale narrowing and SP angle.

Conclusion

Elevated peak systolic velocity did not discriminate between patients with and without TRAS. Adding ancillary parameters into the machine learning algorithm improved specificity and sensitivity similarly in the training and testing sets. The algorithm identified the combination of lumen narrowing coupled with the angle of the systolic peak as better predictor of TRAS. This model may improve the accuracy of ultrasound for transplant renal artery stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hurst, F. P., Abbott, K. C., Neff, R. T., Elster, E. A., Falta, E. M., Lentine, K. L., Agodoa, L. Y., & Jindal, R. M. (2009). Incidence, predictors and outcomes of transplant renal artery stenosis after kidney transplantation: analysis of USRDS. American journal of nephrology30(5), 459–467. https://doi.org/10.1159/000242431

    Article  CAS  PubMed  Google Scholar 

  2. Patel, U., Khaw, K. K., & Hughes, N. C. (2003). Doppler ultrasound for detection of renal transplant artery stenosis-threshold peak systolic velocity needs to be higher in a low-risk or surveillance population. Clinical radiology58(10), 772–777. https://doi.org/10.1016/s0009-9260(03)00211-3

    Article  CAS  PubMed  Google Scholar 

  3. Bruno, S., Remuzzi, G., & Ruggenenti, P. (2004). Transplant renal artery stenosis. Journal of the American Society of Nephrology : JASN, 15(1), 134–141. https://doi.org/10.1097/01.asn.0000099379.61001.f8

    Article  PubMed  Google Scholar 

  4. Mangray, M., & Vella, J. P. (2011). Hypertension after kidney transplant. American journal of kidney diseases: the official journal of the National Kidney Foundation57(2), 331–341. https://doi.org/10.1053/j.ajkd.2010.10.048

    Article  CAS  PubMed  Google Scholar 

  5. de Morais, R. H., Muglia, V. F., Mamere, A. E., Garcia Pisi, T., Saber, L. T., Muglia, V. A., Elias, J., Jr, Piccinato, C. E., & Trad, C. S. (2003). Duplex Doppler sonography of transplant renal artery stenosis. Journal of clinical ultrasound : JCU, 31(3), 135–141. https://doi.org/10.1002/jcu.10147

    Article  PubMed  Google Scholar 

  6. Akbar, S. A., Jafri, S. Z., Amendola, M. A., Madrazo, B. L., Salem, R., & Bis, K. G. (2005). Complications of renal transplantation. Radiographics: a review publication of the Radiological Society of North America, Inc25(5), 1335–1356. https://doi.org/10.1148/rg.255045133

  7. Robinson, K. A., Kriegshauser, J. S., Dahiya, N., Young, S. W., Czaplicki, C. D., & Patel, M. D. (2017). Detection of transplant renal artery stenosis: determining normal velocities at the renal artery anastomosis. Abdominal radiology (New York)42(1), 254–259. https://doi.org/10.1007/s00261-016-0876-7

    Article  PubMed  Google Scholar 

  8. Loubeyre, P., Abidi, H., Cahen, R., & Tran Minh, V. A. (1997). Transplanted renal artery: detection of stenosis with color Doppler US. Radiology203(3), 661–665. https://doi.org/10.1148/radiology.203.3.9169685

    Article  CAS  PubMed  Google Scholar 

  9. Luna C, Hassan F, Scortegagna E, Castillo RP. Analysis of the Peak Systolic Velocity in the Transplant Renal Artery Anastomosis to Determine Normal Values in Patients Without Graft Dysfunction. Journal of Diagnostic Medical Sonography. 2022;38(1):36-43. https://doi.org/10.1177/87564793211029897

    Article  Google Scholar 

  10. Kotval P. S. (1989). Doppler waveform parvus and tardus. A sign of proximal flow obstruction. Journal of ultrasound in medicine: official journal of the American Institute of Ultrasound in Medicine8(8), 435–440. https://doi.org/10.7863/jum.1989.8.8.435

  11. Rubin J. M. (1995). In Doppler sonography, what is aliasing, and how does it help detect vascular stenosis? AJR. American journal of roentgenology165(4), 1003–1004. https://doi.org/10.2214/ajr.165.4.7676944

    Article  CAS  PubMed  Google Scholar 

  12. Rajan, D. K., Stavropoulos, S. W., & Shlansky-Goldberg, R. D. (2004). Management of transplant renal artery stenosis. Seminars in interventional radiology21(4), 259–269. https://doi.org/10.1055/s-2004-861560

    Article  PubMed  PubMed Central  Google Scholar 

  13. Moresco, K. P., Patel, N. H., Namyslowski, Y., Shah, H., Johnson, M. S., & Trerotola, S. O. (1998). Carbon dioxide angiography of the transplanted kidney: technical considerations and imaging findings. AJR. American journal of roentgenology, 171(5), 1271–1276. https://doi.org/10.2214/ajr.171.5.9798859

    Article  CAS  PubMed  Google Scholar 

  14. Sharma, S., Potdar, A., & Kulkarni, A. (2011). Percutaneous transluminal renal stenting for transplant renal artery stenosis. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions, 77(2), 287–293. https://doi.org/10.1002/ccd.22758

    Article  Google Scholar 

  15. Fananapazir G, LaRoy JR, Navarro SM, Corwin MT, Carney B, Troppmann C. Ultrasound Screening for Transplant Renal Artery Stenosis Risk Stratification Using Standardized Criteria in Structured Reporting: A Validation Study. J Ultrasound Med. 2022;41(6):1433-1438. https://doi.org/10.1002/jum.15826

    Article  PubMed  Google Scholar 

  16. Siskind E, Lombardi P, Blum M, et al. Significance of elevated transplant renal artery velocities in the postoperative renal transplant patient. Clin Transplant. 2013;27(2):E157-E160. https://doi.org/10.1111/ctr.12075

    Article  PubMed  Google Scholar 

  17. Granata, A., Clementi, S., Londrino, F., Romano, G., Veroux, M., Fiorini, F., & Fatuzzo, P. (2014). Renal transplant vascular complications: the role of Doppler ultrasound. Journal of ultrasound, 18(2), 101–107. https://doi.org/10.1007/s40477-014-0085-6

    Article  PubMed  PubMed Central  Google Scholar 

  18. Brabrand, K., Holdaas, H., Gunther, A., & Midtvedt, K. (2011). Spontaneous regression of initially elevated peak systolic velocity in renal transplant artery. Transplant international: official journal of the European Society for Organ Transplantation, 24(6), 555–559. https://doi.org/10.1111/j.1432-2277.2011.01233.x

    Article  PubMed  Google Scholar 

  19. Brown, E. D., Chen, M. Y., Wolfman, N. T., Ott, D. J., & Watson, N. E., Jr (2000). Complications of renal transplantation: evaluation with US and radionuclide imaging. Radiographics : a review publication of the Radiological Society of North America, Inc20(3), 607–622. https://doi.org/10.1148/radiographics.20.3.g00ma14607

  20. Sugi, M. D., Joshi, G., Maddu, K. K., Dahiya, N., & Menias, C. O. (2019). Imaging of renal transplant complications throughout the life of the allograft: comprehensive multimodality review. Radiographics: A Review Publication of the Radiological Society of North America, Inc39(5), 1327–1355. https://doi.org/10.1148/rg.2019190096

  21. Kronick, M. D., Chopra, A., Swamy, S., Brar, V., Jung, E., Abraham, C. Z., Liem, T. K., Landry, G. J., & Moneta, G. L. (2020). Peak systolic velocity and color aliasing are important in the development of duplex ultrasound criteria for external carotid artery stenosis. Journal of vascular surgery72(3), 951–957. https://doi.org/10.1016/j.jvs.2019.10.099

    Article  PubMed  Google Scholar 

  22. Trusen, A., Beissert, M., & Hahn, D. (2003). Color Doppler US findings in the diagnosis of arterial occlusive disease of the lower limb. Acta radiologica (Stockholm, Sweden : 1987)44(4), 411–418. https://doi.org/10.1034/j.1600-0455.2003.00087.x

    Article  CAS  PubMed  Google Scholar 

  23. Gottlieb, R. H., Lieberman, J. L., Pabico, R. C., & Waldman, D. L. (1995). Diagnosis of renal artery stenosis in transplanted kidneys: value of Doppler waveform analysis of the intrarenal arteries. AJR. American journal of roentgenology, 165(6), 1441–1446. https://doi.org/10.2214/ajr.165.6.7484582

    Article  CAS  PubMed  Google Scholar 

  24. Kliewer, M. A., Tupler, R. H., Hertzberg, B. S., Paine, S. S., DeLong, D. M., Svetkey, L. P., & Carroll, B. A. (1994). Doppler evaluation of renal artery stenosis: interobserver agreement in the interpretation of waveform morphology. AJR. American journal of roentgenology162(6), 1371–1376. https://doi.org/10.2214/ajr.162.6.8192002

    Article  CAS  PubMed  Google Scholar 

  25. Richardson, D., Foster, J., Davison, A. M., & Irving, H. C. (2000). Parvus tardus waveform suggesting renal artery stenosis-remember the more proximal stenosis. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association15(4), 539–543. https://doi.org/10.1093/ndt/15.4.539

    Article  CAS  PubMed  Google Scholar 

  26. Stavros, A. T., Parker, S. H., Yakes, W. F., Chantelois, A. E., Burke, B. J., Meyers, P. R., & Schenck, J. J. (1992). Segmental stenosis of the renal artery: pattern recognition of tardus and parvus abnormalities with duplex sonography. Radiology184(2), 487–492. https://doi.org/10.1148/radiology.184.2.1620853

    Article  CAS  PubMed  Google Scholar 

  27. Lin SY, Law KM, Yeh YC, et al. Applying Machine Learning to Carotid Sonographic Features for Recurrent Stroke in Patients With Acute Stroke. Front Cardiovasc Med. 2022;9:804410. Published 2022 Jan 28. https://doi.org/10.3389/fcvm.2022.804410

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No financial disclosure or competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yamile Blain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blain, Y., Alessandrino, F., Scortegagna, E. et al. Transplant renal artery stenosis: utilization of machine learning to identify ancillary sonographic and doppler parameters to predict stenosis in patients with graft dysfunction. Abdom Radiol 48, 2102–2110 (2023). https://doi.org/10.1007/s00261-023-03872-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-023-03872-7

Keywords

Navigation