Skip to main content

Advertisement

Log in

Dynamic PET/CT scan of 68Ga-FAPI-04 for the optimal acquisition time in suspected malignant hepatic cancer patients

  • Hepatobiliary
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

Dynamic PET/CT scan of 68Ga-FAPI-04 in patients with suspected malignant hepatic lesions were retrospectively analyzed to find the optimal acquisition time with better lesion detection rate.

Methods

Twenty-two patients with lesions confirmed by CT or MRI were performed with dynamic 68Ga-FAPI-04 PET/CT scan. Tracer uptake of lesions and normal organs at different time points were analyzed. Standardized uptake value (SUV) and tumor-to-background (TBR) were calculated based on the quantification of images.

Results

SUV of normal organs decreased rapidly from 10 to 30 min and decreased gradually from 30 to 60 min. Besides, the uterus showed a particularly high uptake in all patients (12.62 ± 4.58 at 10 min p.i., 12.04 ± 3.99 at 30 min p.i., 10.92 ± 2.38 at 60 min p.i.). SUV of lesions decreased gradually, while TBR increased from 10- to 60-min post-injection. Visual analysis verified a comparable lesion detectability of 30 min and 60 min with images of 10 min showing a decreased lesion detection number.

Conclusion

This study revealed that similar detection rates were achieved at both 30 and 60 min, suggesting a static scan at 30 min to be appropriate in the clinic. Besides, although with high lesion uptake, early 68Ga-FAPI-04 PET imaging at 10 min after tracer injection could cause missed lesion detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SUV:

Standardized uptake value

TBR:

Tumor-to-background ratio

FAP:

Fibroblast-activating protein

DPP:

Dipeptidyl peptidase

NNY:

Neuropeptide Y

CAF:

Cancer-associated fibrosis

RCP:

Radiochemical purity

VOI:

Volumes of interest

SUVmax:

Maximal SUV

TBR:

Tumor-to-background ratio

T/L:

Tumor-to-liver ratio

T/B:

Tumor-to-blood ratio

HNC:

Head and neck cancers

References

  1. Siveke JT (2018) Fibroblast-Activating Protein: Targeting the Roots of the Tumor Microenvironment. J Nucl Med 59:1412-4. https://doi.org/10.2967/jnumed.118.214361.

    Article  CAS  PubMed  Google Scholar 

  2. Hamson EJ, Keane FM, Tholen S, et al (2014) Understanding fibroblast activation protein (FAP): substrates, activities, expression and targeting for cancer therapy. Proteomics Clin Appl 8:454-63. https://doi.org/10.1002/prca.201300095.

    Article  CAS  PubMed  Google Scholar 

  3. Giesel FL, Kratochwil C, Lindner T, et al (2019) (68)Ga-FAPI PET/CT: Biodistribution and Preliminary Dosimetry Estimate of 2 DOTA-Containing FAP-Targeting Agents in Patients with Various Cancers. J Nucl Med 60:386-92. https://doi.org/10.2967/jnumed.118.215913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Meyer C, Dahlbom M, Lindner T, et al (2019) Radiation dosimetry and biodistribution of (68)Ga-FAPI-46 PET imaging in cancer patients. J Nucl Med 61:1171-1177. https://doi.org/10.2967/jnumed.119.236786.

    Article  CAS  PubMed  Google Scholar 

  5. Giesel FL, Heussel CP, Lindner T, et al (2019) FAPI-PET/CT improves staging in a lung cancer patient with cerebral metastasis. Eur J Nucl Med Mol Imaging 46:1754-5. https://doi.org/10.1007/s00259-019-04346-z.

    Article  PubMed  Google Scholar 

  6. Kratochwil C, Flechsig P, Lindner T, et al (2019) (68)Ga-FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. J Nucl Med 60:801-5. https://doi.org/10.2967/jnumed.119.227967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Giesel F, Adeberg S, Syed M, et al (2020) FAPI-74 PET/CT Using Either (18)F-AlF or Cold-kit (68)Ga-labeling: Biodistribution, Radiation Dosimetry and Tumor Delineation in Lung Cancer Patients. J Nucl Med 62:201-207. https://doi.org/10.2967/jnumed.120.245084.

    Article  CAS  PubMed  Google Scholar 

  8. Lindner T, Loktev A, Altmann A, et al (2018) Development of Quinoline-Based Theranostic Ligands for the Targeting of Fibroblast Activation Protein. J Nucl Med 59:1415-22. https://doi.org/10.2967/jnumed.118.210443.

    Article  CAS  PubMed  Google Scholar 

  9. Chen H, Pang Y, Wu J, et al (2020) Comparison of [(68)Ga]Ga-DOTA-FAPI-04 and [(18)F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer. Eur J Nucl Med Mol Imaging 47:1820-32. https://doi.org/10.1007/s00259-020-04769-z.

    Article  PubMed  Google Scholar 

  10. Shi X, Xing H, Yang X, et al (2021) Fibroblast imaging of hepatic carcinoma with (68)Ga-FAPI-04 PET/CT: a pilot study in patients with suspected hepatic nodules. Eur J Nucl Med Mol Imaging 48:196-203. doi:https://doi.org/10.1007/s00259-020-04882-z.

    Article  PubMed  Google Scholar 

  11. Shi X, Xing H, Yang X, et al (2021) Comparison of PET imaging of activated fibroblasts and (18)F-FDG for diagnosis of primary hepatic tumours: a prospective pilot study. Eur J Nucl Med Mol Imaging 48: 1593-1603. https://doi.org/10.1007/s00259-020-05070-9.

    Article  CAS  PubMed  Google Scholar 

  12. Fischer E, Chaitanya K, Wuest T, et al (2012) Radioimmunotherapy of fibroblast activation protein positive tumors by rapidly internalizing antibodies. Clin Cancer Res 18:6208-18. https://doi.org/10.1158/1078-0432.CCR-12-0644.

    Article  CAS  PubMed  Google Scholar 

  13. Langbein T, Weber WA, Eiber M (2019) Future of Theranostics: An Outlook on Precision Oncology in Nuclear Medicine. J Nucl Med 260:13S-9S. https://doi.org/10.2967/jnumed.118.220566.

    Article  CAS  Google Scholar 

  14. Loktev A, Lindner T, Mier W, et al (2018) A Tumor-Imaging Method Targeting Cancer-Associated Fibroblasts. J Nucl Med 59:1423-9. https://doi.org/10.2967/jnumed.118.210435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Loktev A, Lindner T, Burger EM, et al (2019) Development of Fibroblast Activation Protein-Targeted Radiotracers with Improved Tumor Retention. J Nucl Med 60:1421-9. https://doi.org/10.2967/jnumed.118.224469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu F, Qi L, Liu B, et al (2015) Fibroblast activation protein overexpression and clinical implications in solid tumors: a meta-analysis. PLoS One 10:e0116683. https://doi.org/10.1371/journal.pone.0116683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Musto A, Grassetto G, Marzola MC, et al (2014) Role of 18F-FDG PET/CT in the carcinoma of the uterus: a review of literature. Yonsei Med J 55:1467-72. https://doi.org/10.3349/ymj.2014.55.6.1467.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Syed M, Flechsig P, Liermann J, et al (2020) Fibroblast activation protein inhibitor (FAPI) PET for diagnostics and advanced targeted radiotherapy in head and neck cancers. Eur J Nucl Med Mol Imaging 47:2836-2845. https://doi.org/10.1007/s00259-020-04859-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davidson B, Goldberg I, Kopolovic J (1997) Inflammatory response in cervical intraepithelial neoplasia and squamous cell carcinoma of the uterine cervix. Pathol Res Pract 193:491-5. https://doi.org/10.1016/s0344-0338(97)80102-1.

    Article  CAS  PubMed  Google Scholar 

  20. Jansen K, Heirbaut L, Verkerk R, et al (2014) Extended structure-activity relationship and pharmacokinetic investigation of (4-quinolinoyl)glycyl-2-cyanopyrrolidine inhibitors of fibroblast activation protein (FAP). J Med Chem 57:3053-74. https://doi.org/10.1021/jm500031w.

    Article  CAS  PubMed  Google Scholar 

  21. Guo W, Pang Y, Yao L, et al (2021) Imaging fibroblast activation protein in liver cancer: a single-center post hoc retrospective analysis to compare [(68)Ga]Ga-FAPI-04 PET/CT versus MRI and [(18)F]-FDG PET/CT. Eur J Nucl Med Mol Imaging 48(5):1604-1617. https://doi.org/10.1007/s00259-020-05095-0.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was sponsored in part by the National Natural Science Foundation of China (No. 82071967), CAMS initiative for innovative medicine (No. CAMS-2018-I2M-3-001), the National Key Research and Development Program of China (No. 2016YFC0901500), and Center for Rare Diseases Research, Chinese Academy of Medical Sciences, Beijing, China (No. 2016ZX310174-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Huo.

Ethics declarations

Conflict of interest

All authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This study was approved by the Peking Union Medical College Hospital ethics committee (Ethical Review Number: ZS-1810).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, H., Hu, G., Zhu, W. et al. Dynamic PET/CT scan of 68Ga-FAPI-04 for the optimal acquisition time in suspected malignant hepatic cancer patients. Abdom Radiol 48, 895–901 (2023). https://doi.org/10.1007/s00261-022-03764-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-022-03764-2

Keywords

Navigation