Skip to main content

Multimodality imaging findings of infection-induced tumors

Abstract

Several infections can predispose to certain malignancies in different body parts. These infections include viral, bacterial, and fungal pathogens. Imaging plays a vital role in the diagnosis, staging, and management of these neoplastic conditions. Furthermore, it can help in differentiating infection-related non-neoplastic processes that can mimic malignancies. Both radiologists and clinicians should be familiar with these conditions. This review discusses the epidemiology, pathogenesis, and imaging features of infection-related tumors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Data availability

Data used in this study are not shared publicly.

References

  1. National Cancer Institute. Risk factors for cancer. 2015

  2. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, et al. Global cancer observatory: cancer today. Lyon, France: international agency for research on cancer. 2018:1-6.

    Google Scholar 

  3. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khundkar R, Williams G, Fennell N, Ramsden A, McNally M. SQUAMOUS CELL CARCINOMA COMPLICATING CHRONIC OSTEOMYELITIS: CLINICAL FEATURES AND OUTCOME OF A CASE SERIES. Orthopaedic Proceedings. 2015;97-B(SUPP_15):75-.

    Google Scholar 

  5. Shacter E, Weitzman SA. Chronic inflammation and cancer. Oncology (Williston Park). 2002;16(2):217-26, 29; discussion 30-2.

    PubMed  Google Scholar 

  6. Khedr SA, Hassaan MA, Shabana AA, Gaballah AH, Mokhtar DA. Musculoskeletal manifestations of sickle cell disease, diagnosis with whole body MRI. The Egyptian Journal of Radiology and Nuclear Medicine. 2012;43(1):77-84.

    Article  Google Scholar 

  7. Bansal A, Singh MP, Rai B. Human papillomavirus-associated cancers: A growing global problem. Int J Appl Basic Med Res. 2016;6(2):84-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Javadi S, Menias CO, Karbasian N, Shaaban A, Shah K, Osman A, et al. HIV-related Malignancies and Mimics: Imaging Findings and Management. RadioGraphics. 2018;38(7):2051-68.

    Google Scholar 

  9. Odumade OA, Hogquist KA, Balfour HH, Jr. Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clin Microbiol Rev. 2011;24(1):193-209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. [10] Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):83-103.

    Article  PubMed  Google Scholar 

  11. [11] Felberbaum RS. The molecular mechanisms of classic Hodgkin's lymphoma. Yale J Biol Med. 2005;78(4):203-10.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. [12] Toma P, Granata C, Rossi A, Garaventa A. Multimodality imaging of Hodgkin disease and non-Hodgkin lymphomas in children. Radiographics. 2007;27(5):1335-54.

    Article  PubMed  Google Scholar 

  13. Centers for Disease Control and Prevention. Lymphoma. 2018.

  14. [14] Nachman JB, Sposto R, Herzog P, Gilchrist GS, Wolden SL, Thomson J, et al. Randomized comparison of low-dose involved-field radiotherapy and no radiotherapy for children with Hodgkin's disease who achieve a complete response to chemotherapy. J Clin Oncol. 2002;20(18):3765-71.

    Article  PubMed  Google Scholar 

  15. [15] Guermazi A, Brice P, de Kerviler E, Fermé C, Hennequin C, Meignin V, et al. Extranodal Hodgkin disease: spectrum of disease. Radiographics. 2001;21(1):161-79.

    Article  CAS  PubMed  Google Scholar 

  16. [16] Consul N, Menias CO, Lubner MG, Katabathina VS, Chahinian RA, Mansour J, et al. A Review of Viral-Related Malignancies and the Associated Imaging Findings. American Journal of Roentgenology. 2019;214(1):W1-W10.

    Article  PubMed  Google Scholar 

  17. [17] Fahy A, Kong I, Weitzman S, Dix D, Baruchel S, Gerstle J. A role for surgery in the treatment of relapsed Hodgkin lymphoma. Pediatric blood & cancer. 2019;66(1):e27402.

    Article  CAS  Google Scholar 

  18. [18] Sioka C. The utility of FDG PET in diagnosis and follow-up of lymphoma in childhood. Eur J Pediatr. 2013;172(6):733-8.

    Article  PubMed  Google Scholar 

  19. [19] Dörffel W, Rühl U, Lüders H, Claviez A, Albrecht M, Bökkerink J, et al. Treatment of children and adolescents with Hodgkin lymphoma without radiotherapy for patients in complete remission after chemotherapy: final results of the multinational trial GPOH-HD95. J Clin Oncol. 2013;31(12):1562-8.

    Article  PubMed  Google Scholar 

  20. [20] Lyons SF, Liebowitz DN. The roles of human viruses in the pathogenesis of lymphoma. Semin Oncol. 1998;25(4):461-75.

    CAS  PubMed  Google Scholar 

  21. [21] Tarantul VZ. Virus-associated lymphomagenesis. Int J Biomed Sci. 2006;2(2):101-13.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. [22] Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375-90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. [23] Biko DM, Anupindi SA, Hernandez A, Kersun L, Bellah R. Childhood Burkitt lymphoma: abdominal and pelvic imaging findings. American Journal of Roentgenology. 2009;192(5):1304-15.

    Article  PubMed  Google Scholar 

  24. [24] Grande BM, Gerhard DS, Jiang A, Griner NB, Abramson JS, Alexander TB, et al. Genome-wide discovery of somatic coding and noncoding mutations in pediatric endemic and sporadic Burkitt lymphoma. Blood. 2019;133(12):1313-24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. [25] Blum KA, Lozanski G, Byrd JC. Adult Burkitt leukemia and lymphoma. Blood. 2004;104(10):3009-20.

    Article  CAS  PubMed  Google Scholar 

  26. [26] Kotton CN, Fishman JA. Viral infection in the renal transplant recipient. J Am Soc Nephrol. 2005;16(6):1758-74.

    Article  PubMed  Google Scholar 

  27. [27] Biko DM, Anupindi SA, Hernandez A, Kersun L, Bellah R. Childhood Burkitt lymphoma: abdominal and pelvic imaging findings. AJR Am J Roentgenol. 2009;192(5):1304-15.

    Article  PubMed  Google Scholar 

  28. [28] Camacho JC, Moreno CC, Harri PA, Aguirre DA, Torres WE, Mittal PK. Posttransplantation lymphoproliferative disease: proposed imaging classification. Radiographics. 2014;34(7):2025-38.

    Article  PubMed  Google Scholar 

  29. [29] Adami J, Gäbel H, Lindelöf B, Ekström K, Rydh B, Glimelius B, et al. Cancer risk following organ transplantation: a nationwide cohort study in Sweden. Br J Cancer. 2003;89(7):1221-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. [30] Styczynski J, Gil L, Tridello G, Ljungman P, Donnelly JP, van der Velden W, et al. Response to rituximab-based therapy and risk factor analysis in Epstein Barr Virus-related lymphoproliferative disorder after hematopoietic stem cell transplant in children and adults: a study from the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Clin Infect Dis. 2013;57(6):794-802.

    Article  CAS  PubMed  Google Scholar 

  31. [31] Petit B, Le Meur Y, Jaccard A, Paraf F, Robert CL, Bordessoule D, et al. Influence of host-recipient origin on clinical aspects of posttransplantation lymphoproliferative disorders in kidney transplantation. Transplantation. 2002;73(2):265-71.

    Article  PubMed  Google Scholar 

  32. [32] Ballen KK, Cutler C, Yeap BY, McAfee SL, Dey BR, Attar EC, et al. Donor-derived second hematologic malignancies after cord blood transplantation. Biol Blood Marrow Transplant. 2010;16(7):1025-31.

    Article  PubMed  PubMed Central  Google Scholar 

  33. [33] Borhani AA, Hosseinzadeh K, Almusa O, Furlan A, Nalesnik M. Imaging of Posttransplantation Lymphoproliferative Disorder after Solid Organ Transplantation. RadioGraphics. 2009;29(4):981-1000.

    Article  PubMed  Google Scholar 

  34. [34] Pickhardt PJ, Siegel MJ. Posttransplantation lymphoproliferative disorder of the abdomen: CT evaluation in 51 patients. Radiology. 1999;213(1):73-8.

    Article  CAS  PubMed  Google Scholar 

  35. [35] Katabathina VS, Menias CO, Tammisetti VS, Lubner MG, Kielar A, Shaaban A, et al. Malignancy after solid organ transplantation: comprehensive imaging review. Radiographics. 2016;36(5):1390-407.

    Article  PubMed  Google Scholar 

  36. [36] Grulich AE, Van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. The Lancet. 2007;370(9581):59-67.

    Article  Google Scholar 

  37. National Cancer Institute. HIV Infection and Cancer Risk. 2017.

  38. [38] Gantt S, Casper C. Human herpesvirus 8-associated neoplasms: the roles of viral replication and antiviral treatment. Curr Opin Infect Dis. 2011;24(4):295-301.

    Article  PubMed  PubMed Central  Google Scholar 

  39. [39] Douglas JL, Gustin JK, Moses AV, Dezube BJ, Pantanowitz L. Kaposi Sarcoma Pathogenesis: A Triad of Viral Infection, Oncogenesis and Chronic Inflammation. Transl Biomed. 2010;1(2):172.

    PubMed  PubMed Central  Google Scholar 

  40. [40] Cesarman E, Damania B, Krown SE, Martin J, Bower M, Whitby D. Kaposi sarcoma. Nature Reviews Disease Primers. 2019;5(1):9.

    Article  PubMed  Google Scholar 

  41. [41] Gasparetto TD, Marchiori E, Lourenço S, Zanetti G, Vianna AD, Santos AA, et al. Pulmonary involvement in Kaposi sarcoma: correlation between imaging and pathology. Orphanet J Rare Dis. 2009;4:18.

    Article  PubMed  PubMed Central  Google Scholar 

  42. [42] Van Leer-Greenberg B, Kole A, Chawla S. Hepatic Kaposi sarcoma: A case report and review of the literature. World J Hepatol. 2017;9(4):171-9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. [43] Restrepo CS, Martínez S, Lemos JA, Carrillo JA, Lemos DF, Ojeda P, et al. Imaging Manifestations of Kaposi Sarcoma. RadioGraphics. 2006;26(4):1169-85.

    Article  PubMed  Google Scholar 

  44. [44] Chen YB, Rahemtullah A, Hochberg E. Primary effusion lymphoma. Oncologist. 2007;12(5):569-76.

    Article  PubMed  Google Scholar 

  45. [45] Narkhede M, Arora S, Ujjani C. Primary effusion lymphoma: current perspectives. Onco Targets Ther. 2018;11:3747-54.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Centers for disease control and prevention. Genital HPV infection – Fact Sheet. 2022.

  47. National Cancer Institute. HPV and Cancer. 2021.

  48. Comparison of risk factors for invasive squamous cell carcinoma and adenocarcinoma of the cervix: collaborative reanalysis of individual data on 8097 women with squamous cell carcinoma and 1374 women with adenocarcinoma from 12 epidemiological studies. Int J Cancer. 2007;120(4):885–91.

  49. [49] Rezvani M, Shaaban A. Imaging of cervical pathology. Clin Obstet Gynecol. 2009;52(1):94-111.

    Article  PubMed  Google Scholar 

  50. [50] Lee SI, Atri M. 2018 FIGO Staging System for Uterine Cervical Cancer: Enter Cross-sectional Imaging. Radiology. 2019;292(1):15-24.

    Article  PubMed  Google Scholar 

  51. [51] Vandeperre A, Van Limbergen E, Leunen K, Moerman P, Amant F, Vergote I. Para-aortic lymph node metastases in locally advanced cervical cancer: Comparison between surgical staging and imaging. Gynecologic oncology. 2015;138(2):299-303.

    Article  PubMed  Google Scholar 

  52. [52] Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7-33.

    Article  PubMed  Google Scholar 

  53. [53] Alemany L, Saunier M, Alvarado-Cabrero I, Quirós B, Salmeron J, Shin HR, et al. Human papillomavirus DNA prevalence and type distribution in anal carcinomas worldwide. Int J Cancer. 2015;136(1):98-107.

    Article  CAS  PubMed  Google Scholar 

  54. [54] Matalon SA, Mamon HJ, Fuchs CS, Doyle LA, Tirumani SH, Ramaiya NH, et al. Anorectal cancer: critical anatomic and staging distinctions that affect use of radiation therapy. Radiographics. 2015;35(7):2090-107.

    Article  PubMed  Google Scholar 

  55. [55] Kochhar R, Plumb AA, Carrington BM, Saunders M. Imaging of anal carcinoma. American Journal of Roentgenology. 2012;199(3):W335-W44.

    Article  PubMed  Google Scholar 

  56. [56] Grigsby P. FDG-PET/CT: new horizons in anal cancer. Gastroentérologie clinique et biologique. 2009;33(5):456-8.

    Article  CAS  PubMed  Google Scholar 

  57. [57] Goodman MT, Hernandez BY, Shvetsov YB. Demographic and pathologic differences in the incidence of invasive penile cancer in the United States, 1995-2003. Cancer Epidemiol Biomarkers Prev. 2007;16(9):1833-9.

    Article  PubMed  Google Scholar 

  58. [58] Derrick FC, Jr., Lynch KM, Jr., Kretkowski RC, Yarbrough WJ. Epidermoid carcinoma of the penis: computer analysis of 87 cases. J Urol. 1973;110(3):303-5.

    Article  PubMed  Google Scholar 

  59. [59] Singh AK, Saokar A, Hahn PF, Harisinghani MG. Imaging of Penile Neoplasms. RadioGraphics. 2005;25(6):1629-38.

    Article  PubMed  Google Scholar 

  60. [60] Parkin DM, Bray FI, Devesa SS. Cancer burden in the year 2000. The global picture. Eur J Cancer. 2001;37 Suppl 8:S4-66.

    Article  PubMed  Google Scholar 

  61. [61] Udompap P, Mannalithara A, Heo NY, Kim D, Kim WR. Increasing prevalence of cirrhosis among U.S. adults aware or unaware of their chronic hepatitis C virus infection. J Hepatol. 2016;64(5):1027-32.

    Article  PubMed  PubMed Central  Google Scholar 

  62. [62] Averhoff FM, Glass N, Holtzman D. Global burden of hepatitis C: considerations for healthcare providers in the United States. Clin Infect Dis. 2012;55 Suppl 1:S10-5.

    Article  PubMed  Google Scholar 

  63. [63] Lupberger J, Hildt E. Hepatitis B virus-induced oncogenesis. World J Gastroenterol. 2007;13(1):74-81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. [64] Rusyn I, Lemon SM. Mechanisms of HCV-induced liver cancer: what did we learn from in vitro and animal studies? Cancer Lett. 2014;345(2):210-5.

    Article  CAS  PubMed  Google Scholar 

  65. [65] Kulik L, El-Serag HB. Epidemiology and Management of Hepatocellular Carcinoma. Gastroenterology. 2019;156(2):477-91.e1.

    Article  PubMed  Google Scholar 

  66. [66] Beasley RP. Hepatitis B virus. The major etiology of hepatocellular carcinoma. Cancer. 1988;61(10):1942-56.

    Article  CAS  PubMed  Google Scholar 

  67. [67] Luo JC, Hwang SJ, Wu JC, Lai CR, Li CP, Chang FY, et al. Clinical characteristics and prognosis of hepatocellular carcinoma patients with paraneoplastic syndromes. Hepatogastroenterology. 2002;49(47):1315-9.

    PubMed  Google Scholar 

  68. [68] Yi J, Gwak GY, Sinn DH, Kim YJ, Kim HN, Choi MS, et al. Screening for extrahepatic metastases by additional staging modalities is required for hepatocellular carcinoma patients beyond modified UICC stage T1. Hepatogastroenterology. 2013;60(122):328-32.

    CAS  PubMed  Google Scholar 

  69. American College of Radiology. Liver Reporting & Data System (LI-RADS). 2018.

  70. [70] Chernyak V, Fowler KJ, Kamaya A, Kielar AZ, Elsayes KM, Bashir MR, Kono Y, Do RK, Mitchell DG, Singal AG, Tang A, Sirlin CB. Liver Imaging Reporting and Data System (LI-RADS) Version 2018: Imaging of Hepatocellular Carcinoma in At-Risk Patients. Radiology. 2018 Dec;289(3):816-830.

    Article  PubMed  Google Scholar 

  71. [71] Tothill R, Estall V, Rischin D. Merkel cell carcinoma: emerging biology, current approaches, and future directions. Am Soc Clin Oncol Educ Book. 2015:e519-26.

    Article  Google Scholar 

  72. [72] Hughes MP, Hardee ME, Cornelius LA, Hutchins LF, Becker JC, Gao L. Merkel Cell Carcinoma: Epidemiology, Target, and Therapy. Curr Dermatol Rep. 2014;3(1):46-53.

    Article  PubMed  PubMed Central  Google Scholar 

  73. [73] Paulson KG, Park SY, Vandeven NA, Lachance K, Thomas H, Chapuis AG, et al. Merkel cell carcinoma: Current US incidence and projected increases based on changing demographics. J Am Acad Dermatol. 2018;78(3):457-63.e2.

    Article  PubMed  Google Scholar 

  74. [74] Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319(5866):1096-100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. [75] Eftekhari F, Wallace S, Silva E, Lenzi R. Merkel cell carcinoma of the skin: imaging and clinical features in 93 cases. The British journal of radiology. 1996;69(819):226-33.

    Article  CAS  PubMed  Google Scholar 

  76. [76] Anderson SE, Beer KT, Banic A, Steinbach LS, Martin M, Friedrich EE, et al. MRI of Merkel cell carcinoma: histologic correlation and review of the literature. American Journal of Roentgenology. 2005;185(6):1441-8.

    Article  PubMed  Google Scholar 

  77. [77] Anderson SE, Beer KT, Banic A, Steinbach LS, Martin M, Friedrich EE, et al. MRI of merkel cell carcinoma: histologic correlation and review of the literature. AJR Am J Roentgenol. 2005;185(6):1441-8.

    Article  PubMed  Google Scholar 

  78. [78] Bichakjian CK, Olencki T, Aasi SZ, Alam M, Andersen JS, Blitzblau R, et al. Merkel cell carcinoma, version 1.2018, NCCN clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network. 2018;16(6):742-74.

    Article  Google Scholar 

  79. [79] Kouzmina M, Koljonen V, Leikola J, Böhling T, Lantto E. Frequency and locations of systemic metastases in Merkel cell carcinoma by imaging. Acta Radiol Open. 2017;6(3):2058460117700449.

    PubMed  PubMed Central  Google Scholar 

  80. [80] Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74-108.

    Article  PubMed  Google Scholar 

  81. [81] Wroblewski LE, Peek RM, Jr., Wilson KT. Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clinical microbiology reviews. 2010;23(4):713-39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. [82] Teimoorian F, Ranaei M, Hajian Tilaki K, Shokri Shirvani J, Vosough Z. Association of Helicobacter pylori Infection With Colon Cancer and Adenomatous Polyps. Iran J Pathol. 2018;13(3):325-32.

    PubMed  PubMed Central  Google Scholar 

  83. [83] Hatakeyama M. Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe. 2014;15(3):306-16.

    Article  CAS  PubMed  Google Scholar 

  84. [84] McClain MS, Beckett AC, Cover TL. Helicobacter pylori Vacuolating Toxin and Gastric Cancer. Toxins (Basel). 2017;9(10):316.

    Article  PubMed Central  Google Scholar 

  85. [85] Kim I-J, Blanke S. Remodeling the host environment: modulation of the gastric epithelium by the Helicobacter pylori vacuolating toxin (VacA). Frontiers in Cellular and Infection Microbiology. 2012;2.

    Article  Google Scholar 

  86. Marcus R SJ, Williams ME, eds. Lymphoma: Pathology, Diagnosis, and Treatment. Second edition. ed. Cambridge University Press: Cambridge University Press; 2014.

  87. [87] An SK, Han JK, Kim YH, Kim AY, Choi BI, Kim YA, et al. Gastric Mucosa-associated Lymphoid Tissue Lymphoma: Spectrum of Findings at Double-Contrast Gastrointestinal Examination with Pathologic Correlation. RadioGraphics. 2001;21(6):1491-502.

    Article  CAS  PubMed  Google Scholar 

  88. [88] Kiesewetter B, Raderer M. Antibiotic therapy in nongastrointestinal MALT lymphoma: a review of the literature. Blood. 2013;122(8):1350-7.

    Article  CAS  PubMed  Google Scholar 

  89. [89] Nakamura S, Matsumoto T. Helicobacter pylori and gastric mucosa-associated lymphoid tissue lymphoma: recent progress in pathogenesis and management. World J Gastroenterol. 2013;19(45):8181-7.

    Article  PubMed  PubMed Central  Google Scholar 

  90. [90] Correa P, Piazuelo MB. Helicobacter pylori Infection and Gastric Adenocarcinoma. US Gastroenterol Hepatol Rev. 2011;7(1):59-64.

    PubMed  PubMed Central  Google Scholar 

  91. [91] Park BS, Lee SH. Endoscopic features aiding the diagnosis of gastric mucosa-associated lymphoid tissue lymphoma. Yeungnam Univ J Med. 2019;36(2):85-91.

    Article  PubMed  PubMed Central  Google Scholar 

  92. [92] Buy JN, Moss AA. Computed tomography of gastric lymphoma. AJR Am J Roentgenol. 1982;138(5):859-65.

    Article  CAS  PubMed  Google Scholar 

  93. [93] Horton KM, Fishman EK. Current role of CT in imaging of the stomach. Radiographics. 2003;23(1):75-87.

    Article  PubMed  Google Scholar 

  94. [94] García-Figueiras R, Baleato-González S, Padhani AR, Luna-Alcalá A, Marhuenda A, Vilanova JC, et al. Advanced Imaging Techniques in Evaluation of Colorectal Cancer. RadioGraphics. 2018;38(3):740-65.

    Article  PubMed  Google Scholar 

  95. World Health Organization. Schistosomiasis. 2022.

  96. [96] Bocanegra C, Gallego S, Mendioroz J, Moreno M, Sulleiro E, Salvador F, et al. Epidemiology of Schistosomiasis and Usefulness of Indirect Diagnostic Tests in School-Age Children in Cubal, Central Angola. PLOS Neglected Tropical Diseases. 2015;9(10):e0004055.

    Article  PubMed  PubMed Central  Google Scholar 

  97. [97] Mostafa MH, Sheweita SA, O'Connor PJ. Relationship between schistosomiasis and bladder cancer. Clin Microbiol Rev. 1999;12(1):97-111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. [98] Tekes A, Kamel IR, Imam K, Chan TY, Schoenberg MP, Bluemke DA. MR Imaging Features of Transitional Cell Carcinoma of the Urinary Bladder. American Journal of Roentgenology. 2003;180(3):771-7.

    Article  Google Scholar 

Download references

Acknowledgements

None.

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman H. Gaballah.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soliman, M., Guys, N., Liu, P. et al. Multimodality imaging findings of infection-induced tumors. Abdom Radiol 47, 3930–3953 (2022). https://doi.org/10.1007/s00261-022-03651-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-022-03651-w

Keywords