Skip to main content

Advertisement

Log in

Performance of native and gadoxetate-enhanced liver and spleen T1 mapping for noninvasive diagnosis of clinically significant portal hypertension: preliminary results

  • Hepatobiliary
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

In this preliminary study, our aim was to assess the utility of quantitative native-T1 (T1-pre), iron-corrected T1 (cT1) of the liver/spleen and T1 mapping of the liver obtained during hepatobiliary phase (T1-HBP) post-gadoxetate disodium, compared to spleen size/volume and APRI (aspartate aminotransferase-to-platelet ratio index) for noninvasive diagnosis of clinically significant portal hypertension [CSPH, defined as hepatic venous pressure gradient (HVPG) ≥ 10 mm Hg].

Methods

Forty-nine patients (M/F: 27/22, mean age 53y) with chronic liver disease, HVPG measurement and MRI were included. Breath-held T1 and cT1 measurements were obtained using an inversion recovery Look-Locker sequence and a T2* corrected modified Look-Locker sequence, respectively. Liver T1-pre (n = 49), spleen T1 (obtained pre-contrast, n = 47), liver and spleen cT1 (both obtained pre-contrast, n = 30), liver T1-HBP (obtained 20 min post gadoxetate disodium injection, n = 36) and liver T1 uptake (ΔT1, n = 36) were measured. Spleen size/volume and APRI were also obtained. Spearman correlation coefficients were used to assess the correlation between each of liver/spleen T1/cT1 parameters, spleen size/volume and APRI with HVPG. ROC analysis was performed to determine the performance of measured parameters for diagnosis of CSPH.

Results

There were 12/49 (24%) patients with CSPH. Liver T1-pre (r = 0.287, p = 0.045), liver T1-HBP (r = 0.543, p = 0.001), liver ΔT1 (r =  − 0.437, p = 0.008), spleen T1 (r = 0.311, p = 0.033) and APRI (r = 0.394, p = 0.005) were all significantly correlated with HVPG, while liver cT1, spleen cT1 and spleen size/volume were not. The highest AUCs for the diagnosis of CSPH were achieved with liver T1-HBP, liver ΔT1 and spleen T1: 0.881 (95%CI 0.76–1.0, p = 0.001), 0.852 (0.72–0.98, p = 0.002) and 0.781 (0.60–0.95, p = 0.004), respectively.

Conclusion

Our preliminary results demonstrate the potential of liver T1 mapping obtained during HBP post gadoxetate disodium for the diagnosis of CSPH. These results require further validation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APRI:

Aspartate aminotransferase-to-platelet ratio index

AST:

Aspartate aminotransferase

AUC:

Area under the curve

CSPH:

Clinically significant portal hypertension (defined by HVPG ≥ 10 mm Hg)

cT1:

Iron-corrected longitudinal relaxation time

HBP:

Hepatobiliary phase

HVPG:

Hepatic venous pressure gradient

LL IR:

Look-Locker Inversion Recovery

MRE:

Magnetic resonance elastography

PH:

Portal hypertension (defined by HVPG > 5 mmHg)

ROC:

Receiver operating characteristic

SWE:

Shear wave elastography

T1:

Longitudinal or spin–lattice relaxation time

TE:

Transient elastography

TI:

Inversion time

TJ:

Transjugular

VFA:

Variable flip angle

References

  1. de Franchis, R., Expanding consensus in portal hypertension: Report of the Baveno VI Consensus Workshop: Stratifying risk and individualizing care for portal hypertension. J Hepatol, 2015. 63(3): p. 743-52. https://doi.org/https://doi.org/10.1016/j.jhep.2015.05.022

    Article  PubMed  Google Scholar 

  2. Abraldes, J. G., Araujo, I. K., Turón, F., & Berzigotti, A. Diagnosing and monitoring cirrhosis: Liver biopsy, hepatic venous pressure gradient and elastography. Gastroenterol Hepatol, 2012. 35(7): p. 488-95. https://doi.org/10.1016/j.gastrohep.2012.02.010

    Article  PubMed  Google Scholar 

  3. You, M. W., Kim, K. W., Pyo, J. et al. A Meta-analysis for the Diagnostic Performance of Transient Elastography for Clinically Significant Portal Hypertension. Ultrasound Med Biol, 2017. 43(1): p. 59-68. https://doi.org/https://doi.org/10.1016/j.ultrasmedbio.2016.07.025

    Article  PubMed  Google Scholar 

  4. Kennedy, P., Bane, O., Hectors, S. J. et al. Noninvasive imaging assessment of portal hypertension. Abdom Radiol (NY), 2020. 45(11): p. 3473-3495. https://doi.org/https://doi.org/10.1007/s00261-020-02729-7

    Article  Google Scholar 

  5. Hectors, S. J., Bane, O., Stocker, D. et al. Splenic T 1ρ as a noninvasive biomarker for portal hypertension. J Magn Reson Imaging 2020. 52(3): p. 787-794. https://doi.org/10.1002/jmri.27087

  6. Wagner, M., Hectors, S., Bane, O. et al., Noninvasive prediction of portal pressure with MR elastography and DCE-MRI of the liver and spleen: Preliminary results. J Magn Reson Imaging, 2018. 48(4): p. 1091-1103. https://doi.org/https://doi.org/10.1002/jmri.26026

    Article  PubMed  PubMed Central  Google Scholar 

  7. Besa, C., Wagner, M., Lo, G. et al. Detection of liver fibrosis using qualitative and quantitative MR elastography compared to liver surface nodularity measurement, gadoxetate uptake, and serum markers. J Magn Reson Imaging, 2018. 47(6): p. 1552-1561. https://doi.org/https://doi.org/10.1002/jmri.25911

    Article  PubMed  Google Scholar 

  8. Singh, S., Venkatesh, S. K., Loomba, R. et al. Magnetic resonance elastography for staging liver fibrosis in non-alcoholic fatty liver disease: a diagnostic accuracy systematic review and individual participant data pooled analysis. Eur Radiol, 2016. 26(5): p. 1431-40. https://doi.org/https://doi.org/10.1007/s00330-015-3949-z

    Article  PubMed  Google Scholar 

  9. Luetkens, J. A., Klein, S., Träber, F. et al. Quantification of Liver Fibrosis at T1 and T2 Mapping with Extracellular Volume Fraction MRI: Preclinical Results. Radiology, 2018. 288(3): p. 748-754. https://doi.org/https://doi.org/10.1148/radiol.2018180051

    Article  PubMed  Google Scholar 

  10. Bane, O., Hectors, S. J., Wagner, M. et al. Accuracy, repeatability, and interplatform reproducibility of T(1) quantification methods used for DCE-MRI: Results from a multicenter phantom study. Magn Reson Med, 2018. 79(5): p. 2564-2575. https://doi.org/https://doi.org/10.1002/mrm.26903

    Article  PubMed  Google Scholar 

  11. Mesropyan, N., Isaak, A., Faron, A. et al. Magnetic resonance parametric mapping of the spleen for non-invasive assessment of portal hypertension. Eur Radiol, 2021. 31(1): p. 85-93. https://doi.org/https://doi.org/10.1007/s00330-020-07080-5

    Article  CAS  PubMed  Google Scholar 

  12. Palaniyappan, N., Cox, E., Bradley, C. et al. Non-invasive assessment of portal hypertension using quantitative magnetic resonance imaging. J Hepatol, 2016. 65(6): p. 1131-1139. https://doi.org/https://doi.org/10.1016/j.jhep.2016.07.021

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hoffman, D. H., Ayoola, A., Nickel, D., Han, F., Chandarana, H., Shanbhogue, K. P. T1 mapping, T2 mapping and MR elastography of the liver for detection and staging of liver fibrosis. Abdom Radiol (NY), 2020. 45(3): p. 692-700. https://doi.org/https://doi.org/10.1007/s00261-019-02382-9

    Article  Google Scholar 

  14. Ding, Y., Rao, S. X., Zhu, T., Chen, C. Z., Li, R. C., Zeng, M. S. Liver fibrosis staging using T1 mapping on gadoxetate-enhanced MRI compared with DW imaging. Clin Radiol, 2015. 70(10): p. 1096-103. https://doi.org/https://doi.org/10.1016/j.crad.2015.04.014

    Article  CAS  PubMed  Google Scholar 

  15. Obmann, V. C., Berzigotti, A., Catucci, D. et al. T1 mapping of the liver and the spleen in patients with liver fibrosis-does normalization to the blood pool increase the predictive value? Eur Radiol, 2020. https://doi.org/https://doi.org/10.1007/s00330-020-07447-8

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pan, S., X.Q. Wang, Q.Y. Guo Quantitative assessment of hepatic fibrosis in chronic hepatitis B and C: T1 mapping on Gd-EOB-DTPA-enhanced liver magnetic resonance imaging. World J Gastroenterol, 2018. 24(18): p. 2024-2035. https://doi.org/https://doi.org/10.3748/wjg.v24.i18.2024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yoon, J. H., Lee, J. M., Paek, M., Han, J. K., Choi, B. I. Quantitative assessment of hepatic function: modified look-locker inversion recovery (MOLLI) sequence for T1 mapping on Gd-EOB-DTPA-enhanced liver MR imaging. Eur Radiol, 2016. 26(6): p. 1775-82. https://doi.org/https://doi.org/10.1007/s00330-015-3994-7

    Article  PubMed  Google Scholar 

  18. Besa, C., Bane, O., Jajamovich, G., Marchione, J., Taouli, B. 3D T1 relaxometry pre and post gadoxetate injection for the assessment of liver cirrhosis and liver function. Magn Reson Imaging, 2015. 33(9): p. 1075-1082. https://doi.org/https://doi.org/10.1016/j.mri.2015.06.013

    Article  PubMed  Google Scholar 

  19. Cassinotto, C., Feldis, M., Vergniol, J. et al. MR relaxometry in chronic liver diseases: Comparison of T1 mapping, T2 mapping, and diffusion-weighted imaging for assessing cirrhosis diagnosis and severity. Eur J Radiol, 2015. 84(8): p. 1459-1465. https://doi.org/https://doi.org/10.1016/j.ejrad.2015.05.019

    Article  PubMed  Google Scholar 

  20. Haimerl, M., Verloh, N., Zeman, F. et al. Assessment of clinical signs of liver cirrhosis using T1 mapping on Gd-EOB-DTPA-enhanced 3T MRI. PLoS One, 2013. 8(12): p. e85658. https://doi.org/https://doi.org/10.1371/journal.pone.0085658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Katsube, T., Okada, M., Kumano, S. et al. Estimation of liver function using T1 mapping on Gd-EOB-DTPA-enhanced magnetic resonance imaging. Invest Radiol, 2011. 46(4): p. 277-83. https://doi.org/https://doi.org/10.1097/RLI.0b013e318200f67d

    Article  PubMed  Google Scholar 

  22. Hoffman, D. H., Ayoola, A., Nickel, D. et al. MR elastography, T1 and T2 relaxometry of liver: role in noninvasive assessment of liver function and portal hypertension. Abdom Radiol (NY), 2020. 45(9): p. 2680-2687. https://doi.org/https://doi.org/10.1007/s00261-020-02432-7

    Article  Google Scholar 

  23. Haimerl, M., Verloh, N., Fellner, C. et al. MRI-based estimation of liver function: Gd-EOB-DTPA-enhanced T1 relaxometry of 3T vs. the MELD score. Sci Rep, 2014. 4: p. 5621. https://doi.org/https://doi.org/10.1038/srep05621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim, K. A., Park, M. S., Kim, I. S. et al. Quantitative evaluation of liver cirrhosis using T1 relaxation time with 3 tesla MRI before and after oxygen inhalation. J Magn Reson Imaging, 2012. 36(2): p. 405-10. https://doi.org/https://doi.org/10.1002/jmri.23620

    Article  PubMed  Google Scholar 

  25. Zhou, Z. P., Long, L. L., Qiu, W. J. et al. Comparison of 10- and 20-min hepatobiliary phase images on Gd-EOB-DTPA-enhanced MRI T1 mapping for liver function assessment in clinic. Abdom Radiol (NY), 2017. 42(9): p. 2272-2278. https://doi.org/https://doi.org/10.1007/s00261-017-1143-2

    Article  Google Scholar 

  26. Nakagawa, M., Namimoto, T., Shimizu, K. et al. Measuring hepatic functional reserve using T1 mapping of Gd-EOB-DTPA enhanced 3T MR imaging: A preliminary study comparing with (99m)Tc GSA scintigraphy and signal intensity based parameters. Eur J Radiol, 2017. 92: p. 116-123. https://doi.org/https://doi.org/10.1016/j.ejrad.2017.05.011

    Article  PubMed  Google Scholar 

  27. Yoon, J. H., Lee, J. M., Kim, E., Okuaki, T., & Han, J. K. Quantitative Liver Function Analysis: Volumetric T1 Mapping with Fast Multisection B(1) Inhomogeneity Correction in Hepatocyte-specific Contrast-enhanced Liver MR Imaging. Radiology, 2017. 282(2): p. 408-417. https://doi.org/https://doi.org/10.1148/radiol.2016152800

    Article  PubMed  Google Scholar 

  28. Kim, J. E., Kim, H. O., Bae, K., Choi, D. S., & Nickel, D. T1 mapping for liver function evaluation in gadoxetate-enhanced MR imaging: comparison of look-locker inversion recovery and B(1) inhomogeneity-corrected variable flip angle method. Eur Radiol, 2019. 29(7): p. 3584-3594. https://doi.org/https://doi.org/10.1007/s00330-018-5947-4

    Article  PubMed  Google Scholar 

  29. Kamimura, K., Fukukura, Y., Yoneyama, T. et al. Quantitative evaluation of liver function with T1 relaxation time index on Gd-EOB-DTPA-enhanced MRI: comparison with signal intensity-based indices. J Magn Reson Imaging, 2014. 40(4): p. 884-9. https://doi.org/https://doi.org/10.1002/jmri.24443

    Article  PubMed  Google Scholar 

  30. Yoneyama, T., Fukukura, Y., Kamimura, K. et al. Efficacy of liver parenchymal enhancement and liver volume to standard liver volume ratio on Gd-EOB-DTPA-enhanced MRI for estimation of liver function. Eur Radiol, 2014. 24(4): p. 857-65. https://doi.org/https://doi.org/10.1007/s00330-013-3086-5

    Article  PubMed  Google Scholar 

  31. Yoon, J. H., Lee, J. M., Kang, H. J. et al. Quantitative Assessment of Liver Function by Using Gadoxetate-enhanced MRI: Hepatocyte Uptake Ratio. Radiology, 2019. 290(1): p. 125-133. https://doi.org/https://doi.org/10.1148/radiol.2018180753

    Article  PubMed  Google Scholar 

  32. Yamada, A., Hara, T., Li, F., Fujinaga, Y., Ueda, K., Kadoya, M., & Doi, K. (2011). Quantitative evaluation of liver function with use of gadoxetate disodium–enhanced MR imaging. Radiology, 260(3), 727-733. https://doi.org/https://doi.org/10.1148/radiol.11100586

    Article  PubMed  Google Scholar 

  33. Levick, C., Phillips-Hughes, J., Collier, J. et al. Non-invasive assessment of portal hypertension by multi-parametric magnetic resonance imaging of the spleen: A proof of concept study. PLoS One, 2019. 14(8): p. e0221066. https://doi.org/10.1371/journal.pone.0221066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin, Z. H., Xin, Y. N., Dong, Q. J. et al. Performance of the aspartate aminotransferase-to-platelet ratio index for the staging of hepatitis C-related fibrosis: an updated meta-analysis. Hepatology. 2011; 53:726-36. https://doi.org/https://doi.org/10.1002/hep.24105

    Article  PubMed  Google Scholar 

  35. Hectors, S. J., Bane, O., Kennedy, P. et al. Noninvasive diagnosis of portal hypertension using gadoxetate DCE-MRI of the liver and spleen.Eur Radiol (2021): 1-9. https://doi.org/https://doi.org/10.1007/s00330-020-07495-0

    Article  CAS  Google Scholar 

  36. Piechnik, S. K., Ferreira VM., Dall'Armellina E. et al. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold." J Cardiovasc Magn Reson 12 (2010): 69. https://doi.org/https://doi.org/10.1186/1532-429X-12-69

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kennedy, P., Stocker, D., Carbonell, G. et al. MR elastography outperforms shear wave elastography for the diagnosis of clinically significant portal hypertension. Eur Radiol (2022). https://doi.org/10.1007/s00330-022-08935-9

  38. Banerjee, R., Pavlides, M., Tunnicliffe, E. M. et al. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepatol 60.1 (2014): 69-77. https://doi.org/https://doi.org/10.1016/j.jhep.2013.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  39. Labranche, R., Gilbert, G., Cerny, M. et al. (2018). Liver iron quantification with MR imaging: a primer for radiologists. Radiographics, 38(2), 392-412. https://doi.org/https://doi.org/10.1148/rg.2018170079

    Article  PubMed  Google Scholar 

  40. Yamada, A., Hara, T., Li, F. et al. Quantitative evaluation of liver function with use of gadoxetate disodium–enhanced MR imaging. Radiology 260.3 (2011): 727-733. https://doi.org/https://doi.org/10.1148/radiol.11100586

    Article  PubMed  Google Scholar 

  41. Dennis, A., Kelly, M. D., Fernandes, C. et al. Correlations between MRI biomarkers PDFF and cT1 with histopathological features of non-alcoholic steatohepatitis. Front Endocrinol 11 (2021): 1053. https://doi.org/https://doi.org/10.3389/fendo.2020.575843

    Article  Google Scholar 

  42. Li, Z., Sun, J., Hu, X. et al. Assessment of liver fibrosis by variable flip angle T1 mapping at 3.0T. J Magn Reson Imaging, 2016. 43(3): p. 698-703. https://doi.org/https://doi.org/10.1002/jmri.25030

    Article  PubMed  Google Scholar 

  43. Liberman, G., Y. Louzoun, D. Ben Bashat, T1 mapping using variable flip angle SPGR data with flip angle correction. J Magn Reson Imaging, 2014. 40(1): p. 171-80. https://doi.org/https://doi.org/10.1002/jmri.24373

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

This study has received funding by National Institute of Diabetes and Kidney Diseases (NIDDK, Grant 1R01DK113272), Perspectum, and Siemens Healthineers. None of these sponsors were involved in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bachir Taouli.

Ethics declarations

Conflict of interest

Bachir Taouli: consultancy and/or advisory roles for Bayer, Helio Health and research funding/support from Bayer, Takeda, Regeneron, Siemens Healthineers, Echosens, Stefanie Hectors: Employee of Regeneron, Matthew D. Kelly: Employee of Perspectum. The authors declare they have no non-financial interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by the Institutional Review Board of Mount Sinai Hospital.

Consent to participate

Written informed consent was obtained from all patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 71 kb)

Supplementary file2 (JPG 64 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altinmakas, E., Bane, O., Hectors, S.J. et al. Performance of native and gadoxetate-enhanced liver and spleen T1 mapping for noninvasive diagnosis of clinically significant portal hypertension: preliminary results. Abdom Radiol 47, 3758–3769 (2022). https://doi.org/10.1007/s00261-022-03645-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-022-03645-8

Keywords

Navigation