Skip to main content

Imaging evaluation of the pancreas in diabetic patients

Abstract

Diabetes mellitus (DM) is becoming a global epidemic and its diagnosis and monitoring are based on laboratory testing which sometimes have limitations. The pancreas plays a key role in metabolism and is involved in the pathogenesis of DM. It has long been known through cadaver biopsies that pancreas volume is decreased in patients with DM. With the development of different imaging modalities over the last two decades, many studies have attempted to determine whether there other changes occurred in the pancreas of diabetic patients. This review summarizes current knowledge about the use of different imaging approaches (such as CT, MR, and US) and radiomics for exploring pancreatic changes in diabetic patients. Imaging studies are expected to produce reliable information regarding DM, and radiomics could provide increasingly valuable information to identify some undetectable features and help diagnose and predict the occurrence of diabetes through pancreas imaging.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Data sharing is not applicable to this article as no datasets were generated. Summary of findings from the previously published articles is provided already in figures within this review.

References

  1. Association AD. (2021). 2. Classification and Diagnosis of Diabetes:Standards of Medical Care in Diabetes—2021. 44(Supplement 1):S15-S33. doi: https://doi.org/10.2337/dc21-S002 %J Diabetes Care

  2. Saeedi P, Petersohn I, Salpea P, et al. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract.157:107843. doi: https://doi.org/10.1016/j.diabres.2019.107843

    Article  PubMed  Google Scholar 

  3. Williams R, Karuranga S, Malanda B, et al. (2020). Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract.162:108072. doi: https://doi.org/10.1016/j.diabres.2020.108072

    Article  PubMed  Google Scholar 

  4. Committee TIE. (2009). International Expert Committee Report on the Role of the A1C Assay in the Diagnosis of Diabetes. 32(7):1327–1334. doi: https://doi.org/10.2337/dc09-9033 %J Diabetes Care

  5. Kim DL, Kim SD, Kim SK, Park S, Song KH. (2016). Is an Oral Glucose Tolerance Test Still Valid for Diagnosing Diabetes Mellitus? Diabetes & metabolism journal.40(2):118-128. doi: https://doi.org/10.4093/dmj.2016.40.2.118

    Article  Google Scholar 

  6. Petersmann A, Müller-Wieland D, Müller UA, et al. (2019). Definition, Classification and Diagnosis of Diabetes Mellitus. Exp Clin Endocrinol Diabetes.127(S 01):S1-S7. doi: https://doi.org/10.1055/a-1018-9078

    CAS  Article  PubMed  Google Scholar 

  7. American Diabetes A. (2019). Diabetes Care in the Hospital: Standards of Medical Care in Diabetes-2019. Diabetes Care.42(Suppl 1):S173-S181. doi: https://doi.org/10.2337/dc19-S015

    Article  Google Scholar 

  8. Mardon R, Marker D, Nooney J, et al. (2017). Novel Methods and Data Sources for Surveillance of State-Level Diabetes and Prediabetes Prevalence. Preventing chronic disease.14:E106. doi: https://doi.org/10.5888/pcd14.160572

    Article  PubMed  PubMed Central  Google Scholar 

  9. Beagley J, Guariguata L, Weil C, Motala AA. (2014). Global estimates of undiagnosed diabetes in adults. Diabetes research and clinical practice.103(2):150-160. doi: https://doi.org/10.1016/j.diabres.2013.11.001

    Article  PubMed  Google Scholar 

  10. Fisher-Hoch SP, Vatcheva KP, Rahbar MH, McCormick JB. (2015). Undiagnosed Diabetes and Pre-Diabetes in Health Disparities. PloS one.10(7):e0133135. doi: https://doi.org/10.1371/journal.pone.0133135

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Bonora E, Tuomilehto J. (2011). The pros and cons of diagnosing diabetes with A1C. Diabetes Care.34 Suppl 2:S184-190. doi: https://doi.org/10.2337/dc11-s216

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Sakata N, Egawa S, Rikiyama T, et al. (2011). Computed tomography reflected endocrine function of the pancreas. Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract.15(3):525-532. doi: https://doi.org/10.1007/s11605-010-1406-5

    Article  Google Scholar 

  13. Yokota K, Fukushima M, Takahashi Y, Igaki N, Seino S. (2012). Insulin secretion and computed tomography values of the pancreas in the early stage of the development of diabetes. J Diabetes Investig.3(4):371-376. doi: https://doi.org/10.1111/j.2040-1124.2012.00212.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. DeSouza SV, Singh RG, Yoon HD, Murphy R, Plank LD, Petrov MS. (2018). Pancreas volume in health and disease: a systematic review and meta-analysis. Expert Rev Gastroenterol Hepatol.12(8):757-766. doi: https://doi.org/10.1080/17474124.2018.1496015

    CAS  Article  PubMed  Google Scholar 

  15. Al-Mrabeh A, Hollingsworth KG, Shaw JAM, et al. (2020). 2-year remission of type 2 diabetes and pancreas morphology: a post-hoc analysis of the DiRECT open-label, cluster-randomised trial. The lancet Diabetes & endocrinology.8(12):939-948. doi: https://doi.org/10.1016/s2213-8587(20)30303-x

    CAS  Article  Google Scholar 

  16. Al-Mrabeh A, Hollingsworth KG, Steven S, Taylor R. (2016). Morphology of the pancreas in type 2 diabetes: effect of weight loss with or without normalisation of insulin secretory capacity. Diabetologia.59(8):1753-1759. doi: https://doi.org/10.1007/s00125-016-3984-6

    Article  PubMed  PubMed Central  Google Scholar 

  17. Macauley M, Percival K, Thelwall PE, Hollingsworth KG, Taylor R. (2015). Altered volume, morphology and composition of the pancreas in type 2 diabetes. PLoS One.10(5):e0126825. doi: https://doi.org/10.1371/journal.pone.0126825

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Matveyenko AV, Butler PC. (2008). Relationship between beta-cell mass and diabetes onset. Diabetes, obesity & metabolism.10 Suppl 4(0 4):23–31. doi: https://doi.org/10.1111/j.1463-1326.2008.00939.x

  19. (2019). Classification and Diagnosis of Diabetes: Standards ofMedical Care in Diabetesd2019. Diabetes care.42(Suppl 1):S13-S28. doi: https://doi.org/10.2337/dc19-S002

  20. Robertson RP. (2007). Estimation of beta-cell mass by metabolic tests: necessary, but how sufficient? Diabetes.56(10):2420-2424. doi: https://doi.org/10.2337/db07-0742

    CAS  Article  PubMed  Google Scholar 

  21. Virostko J, Radhika A, Poffenberger G, et al. (2010). Bioluminescence imaging in mouse models quantifies beta cell mass in the pancreas and after islet transplantation. Molecular imaging and biology.12(1):42-53. doi: https://doi.org/10.1007/s11307-009-0240-1

    Article  PubMed  Google Scholar 

  22. Virostko J, Radhika A, Poffenberger G, Dula AN, Moore DJ, Powers AC. (2013). Bioluminescence imaging reveals dynamics of beta cell loss in the non-obese diabetic (NOD) mouse model. PLoS One.8(3):e57784. doi: https://doi.org/10.1371/journal.pone.0057784

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Patel M, Gleason A, O'Malley S, et al. (2014). Non-invasive bioluminescence imaging of β-cell function in obese-hyperglycemic [ob/ob] mice. PLoS One.9(9):e106693. doi: https://doi.org/10.1371/journal.pone.0106693

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Lubag AJ, De Leon-Rodriguez LM, Burgess SC, Sherry AD. (2011). Noninvasive MRI of β-cell function using a Zn2+-responsive contrast agent. Proc Natl Acad Sci U S A.108(45):18400-18405. doi: https://doi.org/10.1073/pnas.1109649108

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kriz J, Jirák D, Girman P, et al. (2005). Magnetic resonance imaging of pancreatic islets in tolerance and rejection. Transplantation.80(11):1596-1603. doi: https://doi.org/10.1097/01.tp.0000183959.73681.b9

    Article  PubMed  Google Scholar 

  26. Zacharovová K, Berková Z, Jirák D, et al. (2012). Processing of superparamagnetic iron contrast agent ferucarbotran in transplanted pancreatic islets. Contrast media & molecular imaging.7(6):485-493. doi: https://doi.org/10.1002/cmmi.1477

    CAS  Article  Google Scholar 

  27. Sweet IR, Cook DL, Lernmark A, et al. (2004). Systematic screening of potential beta-cell imaging agents. Biochemical and biophysical research communications.314(4):976-983. doi: https://doi.org/10.1016/j.bbrc.2003.12.182

    CAS  Article  PubMed  Google Scholar 

  28. Gimi B, Leoni L, Oberholzer J, et al. (2006). Functional MR microimaging of pancreatic beta-cell activation. Cell transplantation.15(2):195-203. doi: https://doi.org/10.3727/000000006783982151

    Article  PubMed  Google Scholar 

  29. Clark PB, Plaza MJ, Kraas J, et al. (2009). Dual radiotracer analysis of cholinergic neuronal changes in prediabetic mouse pancreas. Diabetes technology & therapeutics.11(2):107-111. doi: https://doi.org/10.1089/dia.2008.0024

    CAS  Article  Google Scholar 

  30. Goland R, Freeby M, Parsey R, et al. (2009). 11C-dihydrotetrabenazine PET of the pancreas in subjects with long-standing type 1 diabetes and in healthy controls. Journal of nuclear medicine : official publication, Society of Nuclear Medicine.50(3):382-389. doi: https://doi.org/10.2967/jnumed.108.054866

    CAS  Article  Google Scholar 

  31. Kung MP, Hou C, Lieberman BP, et al. (2008). In vivo imaging of beta-cell mass in rats using 18F-FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus. Journal of nuclear medicine : official publication, Society of Nuclear Medicine.49(7):1171-1176. doi: https://doi.org/10.2967/jnumed.108.051680

    CAS  Article  Google Scholar 

  32. Souza F, Simpson N, Raffo A, et al. (2006). Longitudinal noninvasive PET-based beta cell mass estimates in a spontaneous diabetes rat model. J Clin Invest.116(6):1506-1513. doi: https://doi.org/10.1172/jci27645

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Brom M, Woliner-van der Weg W, Joosten L, et al. (2014). Non-invasive quantification of the beta cell mass by SPECT with 111In-labelled exendin. Diabetologia.57(5):950-959. doi: https://doi.org/10.1007/s00125-014-3166-3

    CAS  Article  PubMed  Google Scholar 

  34. Wu Z, Todorov I, Li L, et al. (2011). In vivo imaging of transplanted islets with 64Cu-DO3A-VS-Cys40-Exendin-4 by targeting GLP-1 receptor. Bioconjugate chemistry.22(8):1587-1594. doi: https://doi.org/10.1021/bc200132t

    CAS  Article  PubMed  Google Scholar 

  35. Wei W, Ehlerding EB, Lan X, Luo QY, Cai W. (2019). Molecular imaging of beta-cells: diabetes and beyond. Adv Drug Deliv Rev.139:16-31. doi: https://doi.org/10.1016/j.addr.2018.06.022

    CAS  Article  PubMed  Google Scholar 

  36. Neo CWY, Ciaramicoli LM, Soetedjo AAP, Teo AKK, Kang NY. (2020). A new perspective of probe development for imaging pancreatic beta cell in vivo. Semin Cell Dev Biol.103:3-13. doi: https://doi.org/10.1016/j.semcdb.2020.01.009

    CAS  Article  PubMed  Google Scholar 

  37. Virostko J, Hilmes M, Eitel K, Moore DJ, Powers AC. (2016). Use of the Electronic Medical Record to Assess Pancreas Size in Type 1 Diabetes. PLoS One.11(7):e0158825. doi: https://doi.org/10.1371/journal.pone.0158825

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Cecil RL. (1909). A study of the pathological anatomy of the pancreas in ninety cases of diabetes mellitus. The Journal of experimental medicine.11(2):266-290. doi: https://doi.org/10.1084/jem.11.2.266

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Maclean N, Ogilvie RF. (1959). Observations on the pancreatic islet tissue of young diabetic subjects. Diabetes.8(2):83-91. doi: https://doi.org/10.2337/diab.8.2.83

    CAS  Article  PubMed  Google Scholar 

  40. Löhr M, Klöppel G. (1987). Residual insulin positivity and pancreatic atrophy in relation to duration of chronic type 1 (insulin-dependent) diabetes mellitus and microangiopathy. Diabetologia.30(10):757-762. doi: https://doi.org/10.1007/bf00275740

    Article  PubMed  Google Scholar 

  41. Fonseca V, Berger LA, Beckett AG, Dandona P. (1985). Size of pancreas in diabetes mellitus: a study based on ultrasound. British medical journal (Clinical research ed).291(6504):1240-1241. doi: https://doi.org/10.1136/bmj.291.6504.1240

    CAS  Article  PubMed Central  Google Scholar 

  42. Alzaid A, Aideyan O, Nawaz S. (1993). The size of the pancreas in diabetes mellitus. Diabet Med.10(8):759-763. doi: https://doi.org/10.1111/j.1464-5491.1993.tb00160.x

    CAS  Article  PubMed  Google Scholar 

  43. Silva ME, Vezozzo DP, Ursich MJ, Rocha DM, Cerri GG, Wajchenberg BL. (1993). Ultrasonographic abnormalities of the pancreas in IDDM and NIDDM patients. Diabetes Care.16(9):1296-1297. doi: https://doi.org/10.2337/diacare.16.9.1296

    CAS  Article  PubMed  Google Scholar 

  44. Augustine P, Gent R, Louise J, et al. (2020). Pancreas size and exocrine function is decreased in young children with recent-onset Type 1 diabetes. Diabet Med.37(8):1340-1343. doi: https://doi.org/10.1111/dme.13987

    CAS  Article  PubMed  Google Scholar 

  45. Altobelli E, Blasetti A, Verrotti A, Di Giandomenico V, Bonomo L, Chiarelli F. (1998). Size of pancreas in children and adolescents with type I (insulin-dependent) diabetes. Journal of clinical ultrasound : JCU.26(8):391-395. doi: https://doi.org/10.1002/(sici)1097-0096(199810)26:8<391::aid-jcu3>3.0.co;2-d

    CAS  Article  PubMed  Google Scholar 

  46. Gilbeau JP, Poncelet V, Libon E, Derue G, Heller FR. (1992). The density, contour, and thickness of the pancreas in diabetics: CT findings in 57 patients. AJR Am J Roentgenol.159(3):527-531. doi: https://doi.org/10.2214/ajr.159.3.1503017

    CAS  Article  PubMed  Google Scholar 

  47. Goda K, Sasaki E, Nagata K, Fukai M, Ohsawa N, Hahafusa T. (2001). Pancreatic volume in type 1 and type 2 diabetes mellitus. Acta Diabetol.38(3):145-149. doi: https://doi.org/10.1007/s005920170012

    CAS  Article  PubMed  Google Scholar 

  48. Philippe MF, Benabadji S, Barbot-Trystram L, Vadrot D, Boitard C, Larger E. (2011). Pancreatic volume and endocrine and exocrine functions in patients with diabetes. Pancreas.40(3):359-363. doi: https://doi.org/10.1097/MPA.0b013e3182072032

    CAS  Article  PubMed  Google Scholar 

  49. Lu J, Hou X, Pang C, et al. (2016). Pancreatic volume is reduced in patients with latent autoimmune diabetes in adults. Diabetes/metabolism research and reviews.32(8):858-866. doi: https://doi.org/10.1002/dmrr.2806

    CAS  Article  PubMed  Google Scholar 

  50. Sasamori H, Fukui T, Hayashi T, et al. (2018). Analysis of pancreatic volume in acute-onset, slowly-progressive and fulminant type 1 diabetes in a Japanese population. J Diabetes Investig.9(5):1091-1099. doi: https://doi.org/10.1111/jdi.12816

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Lim S, Bae JH, Chun EJ, et al. (2014). Differences in pancreatic volume, fat content, and fat density measured by multidetector-row computed tomography according to the duration of diabetes. Acta Diabetol.51(5):739-748. doi: https://doi.org/10.1007/s00592-014-0581-3

    Article  PubMed  Google Scholar 

  52. Saisho Y, Butler AE, Meier JJ, et al. (2007). Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin Anat.20(8):933-942. doi: https://doi.org/10.1002/ca.20543

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Bilgin M, Balci NC, Momtahen AJ, Bilgin Y, Klör HU, Rau WS. (2009). MRI and MRCP findings of the pancreas in patients with diabetes mellitus: compared analysis with pancreatic exocrine function determined by fecal elastase 1. Journal of clinical gastroenterology.43(2):165-170. doi: https://doi.org/10.1097/MCG.0b013e3181587912

    Article  PubMed  Google Scholar 

  54. Gaglia JL, Guimaraes AR, Harisinghani M, et al. (2015). Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients. J Clin Invest.121(1):442-445. doi: https://doi.org/10.1172/JCI44339

    CAS  Article  Google Scholar 

  55. Williams AJ, Thrower SL, Sequeiros IM, et al. (2012). Pancreatic volume is reduced in adult patients with recently diagnosed type 1 diabetes. The Journal of clinical endocrinology and metabolism.97(11):E2109-2113. doi: https://doi.org/10.1210/jc.2012-1815

    CAS  Article  PubMed  Google Scholar 

  56. Williams AJ, Chau W, Callaway MP, Dayan CM. (2007). Magnetic resonance imaging: a reliable method for measuring pancreatic volume in Type 1 diabetes. Diabet Med.24(1):35-40. doi: https://doi.org/10.1111/j.1464-5491.2007.02027.x

    CAS  Article  PubMed  Google Scholar 

  57. Regnell SE, Peterson P, Trinh L, et al. (2016). Pancreas volume and fat fraction in children with Type 1 diabetes. Diabet Med.33(10):1374-1379. doi: https://doi.org/10.1111/dme.13115

    CAS  Article  PubMed  Google Scholar 

  58. Campbell-Thompson ML, Filipp SL, Grajo JR, et al. (2019). Relative Pancreas Volume Is Reduced in First-Degree Relatives of Patients With Type 1 Diabetes. Diabetes Care.42(2):281-287. doi: https://doi.org/10.2337/dc18-1512

    CAS  Article  PubMed  Google Scholar 

  59. Virostko J, Williams J, Hilmes M, et al. (2019). Pancreas Volume Declines During the First Year After Diagnosis of Type 1 Diabetes and Exhibits Altered Diffusion at Disease Onset. Diabetes Care.42(2):248-257. doi: https://doi.org/10.2337/dc18-1507

    CAS  Article  PubMed  Google Scholar 

  60. Gaglia JL, Harisinghani M, Aganj I, et al. (2015). Noninvasive mapping of pancreatic inflammation in recent-onset type-1 diabetes patients. Proc Natl Acad Sci U S A.112(7):2139-2144. doi: https://doi.org/10.1073/pnas.1424993112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Campbell-Thompson M, Wasserfall C, Montgomery EL, Atkinson MA, Kaddis JS. (2012). Pancreas organ weight in individuals with disease-associated autoantibodies at risk for type 1 diabetes. Jama.308(22):2337-2339. doi: https://doi.org/10.1001/jama.2012.15008

    CAS  Article  PubMed  Google Scholar 

  62. Steven S, Hollingsworth KG, Al-Mrabeh A, et al. (2016). Very Low-Calorie Diet and 6 Months of Weight Stability in Type 2 Diabetes: Pathophysiological Changes in Responders and Nonresponders. Diabetes Care.39(5):808-815. doi: https://doi.org/10.2337/dc15-1942

    CAS  Article  PubMed  Google Scholar 

  63. Taylor R, Al-Mrabeh A, Zhyzhneuskaya S, et al. (2018). Remission of Human Type 2 Diabetes Requires Decrease in Liver and Pancreas Fat Content but Is Dependent upon Capacity for beta Cell Recovery. Cell Metab.28(4):547-556 e543. doi: https://doi.org/10.1016/j.cmet.2018.07.003

    CAS  Article  PubMed  Google Scholar 

  64. Poggi C, Le Marchand-Brustel Y, Zapf J, Froesch ER, Freychet P. (1979). Effects and binding of insulin-like growth factor I in the isolated soleus muscle of lean and obese mice: comparison with insulin. Endocrinology.105(3):723-730. doi: https://doi.org/10.1210/endo-105-3-723

    CAS  Article  PubMed  Google Scholar 

  65. Matsuda A, Makino N, Tozawa T, et al. (2014). Pancreatic fat accumulation, fibrosis, and acinar cell injury in the Zucker diabetic fatty rat fed a chronic high-fat diet. Pancreas.43(5):735-743. doi: https://doi.org/10.1097/mpa.0000000000000129

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Chiarelli F, Verrotti A, Altobelli E, Blasetti A, Morgese G. (1995). Size of the pancreas in type I diabetic children and adolescents. Diabetes Care.18(11):1505-1506.

    CAS  Article  Google Scholar 

  67. Misra A, Anoop S, Gulati S, Mani K, Bhatt SP, Pandey RM. (2015). Body Fat Patterning, Hepatic Fat and Pancreatic Volume of Non-Obese Asian Indians with Type 2 Diabetes in North India: A Case-Control Study. PLoS One.10(10):e0140447. doi: https://doi.org/10.1371/journal.pone.0140447

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Campbell-Thompson ML, Kaddis JS, Wasserfall C, et al. (2016). The influence of type 1 diabetes on pancreatic weight. Diabetologia.59(1):217-221. doi: https://doi.org/10.1007/s00125-015-3752-z

    Article  PubMed  Google Scholar 

  69. Bini J, Naganawa M, Nabulsi N, et al. (2018). Evaluation of PET Brain Radioligands for Imaging Pancreatic β-Cell Mass: Potential Utility of (11)C-(+)-PHNO. Journal of nuclear medicine : official publication, Society of Nuclear Medicine.59(8):1249-1254. doi: https://doi.org/10.2967/jnumed.117.197285

    CAS  Article  Google Scholar 

  70. Eriksson O, Johnström P, Cselenyi Z, et al. (2018). In Vivo Visualization of β-Cells by Targeting of GPR44. Diabetes.67(2):182-192. doi: https://doi.org/10.2337/db17-0764

    CAS  Article  PubMed  Google Scholar 

  71. Balhuizen A, Massa S, Mathijs I, et al. (2017). A nanobody-based tracer targeting DPP6 for non-invasive imaging of human pancreatic endocrine cells. Scientific reports.7(1):15130. doi: https://doi.org/10.1038/s41598-017-15417-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Burute N, Nisenbaum R, Jenkins DJ, et al. (2014). Pancreas volume measurement in patients with Type 2 diabetes using magnetic resonance imaging-based planimetry. Pancreatology : official journal of the International Association of Pancreatology (IAP) [et al].14(4):268–274. doi: https://doi.org/10.1016/j.pan.2014.04.031

  73. Hung CS, Tseng PH, Tu CH, et al. (2018). Increased Pancreatic Echogenicity with US: Relationship to Glycemic Progression and Incident Diabetes. Radiology.287(3):853-863. doi: https://doi.org/10.1148/radiol.2018170331

    Article  PubMed  Google Scholar 

  74. Garcia TS, Rech TH, Leitao CB. (2017). Pancreatic size and fat content in diabetes: A systematic review and meta-analysis of imaging studies. PLoS One.12(7):e0180911. doi: https://doi.org/10.1371/journal.pone.0180911

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Singh RG, Yoon HD, Wu LM, Lu J, Plank LD, Petrov MS. (2017). Ectopic fat accumulation in the pancreas and its clinical relevance: A systematic review, meta-analysis, and meta-regression. Metabolism: clinical and experimental.69:1-13. doi: https://doi.org/10.1016/j.metabol.2016.12.012

    CAS  Article  Google Scholar 

  76. Smits MM, van Geenen EJ. (2011). The clinical significance of pancreatic steatosis. Nat Rev Gastroenterol Hepatol.8(3):169-177. doi: https://doi.org/10.1038/nrgastro.2011.4

    Article  PubMed  Google Scholar 

  77. Kim SY, Kim H, Cho JY, et al. (2014). Quantitative assessment of pancreatic fat by using unenhanced CT: pathologic correlation and clinical implications. Radiology.271(1):104-112. doi: https://doi.org/10.1148/radiol.13122883

    Article  PubMed  Google Scholar 

  78. Al-Mrabeh A, Hollingsworth KG, Steven S, Tiniakos D, Taylor R. (2017). Quantification of intrapancreatic fat in type 2 diabetes by MRI. PLoS One.12(4):e0174660. doi: https://doi.org/10.1371/journal.pone.0174660

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Tushuizen ME, Bunck MC, Pouwels PJ, et al. (2007). Pancreatic fat content and beta-cell function in men with and without type 2 diabetes. Diabetes Care.30(11):2916-2921. doi: https://doi.org/10.2337/dc07-0326

    CAS  Article  PubMed  Google Scholar 

  80. Yamazaki H, Tauchi S, Wang J, et al. (2020). Longitudinal association of fatty pancreas with the incidence of type-2 diabetes in lean individuals: a 6-year computed tomography-based cohort study. J Gastroenterol.55(7):712-721. doi: https://doi.org/10.1007/s00535-020-01683-x

    CAS  Article  PubMed  Google Scholar 

  81. Idilman IS, Tuzun A, Savas B, et al. (2015). Quantification of liver, pancreas, kidney, and vertebral body MRI-PDFF in non-alcoholic fatty liver disease. Abdom Imaging.40(6):1512-1519. doi: https://doi.org/10.1007/s00261-015-0385-0

    Article  PubMed  Google Scholar 

  82. Sarma MK, Saucedo A, Darwin CH, et al. (2020). Noninvasive assessment of abdominal adipose tissues and quantification of hepatic and pancreatic fat fractions in type 2 diabetes mellitus. Magnetic resonance imaging.72:95-102. doi: https://doi.org/10.1016/j.mri.2020.07.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Nadarajah C, Fananapazir G, Cui E, et al. (2019). Association of pancreatic fat content with type II diabetes mellitus. Clin Radiol.75(1):51-56. doi: https://doi.org/10.1016/j.crad.2019.05.027

    Article  PubMed  Google Scholar 

  84. Tirkes T, Jeon CY, Li L, et al. (2019). Association of Pancreatic Steatosis With Chronic Pancreatitis, Obesity, and Type 2 Diabetes Mellitus. Pancreas.48(3):420-426. doi: https://doi.org/10.1097/MPA.0000000000001252

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Ma J, Song Z, Yan F. (2014). Detection of hepatic and pancreatic fat infiltration in type II diabetes mellitus patients with IDEAL-Quant using 3.0T MR: comparison with single-voxel proton spectroscopy. Chinese medical journal.127(20):3548-3552.

    PubMed  Google Scholar 

  86. Horii T, Fujita Y, Ishibashi C, et al. (2020). Islet inflammation is associated with pancreatic fatty infiltration and hyperglycemia in type 2 diabetes. BMJ open diabetes research & care.8(1). doi: https://doi.org/10.1136/bmjdrc-2020-001508

    Article  Google Scholar 

  87. Murakami R, Saisho Y, Watanabe Y, et al. (2017). Pancreas Fat and β Cell Mass in Humans With and Without Diabetes: An Analysis in the Japanese Population. The Journal of clinical endocrinology and metabolism.102(9):3251-3260. doi: https://doi.org/10.1210/jc.2017-00828

    Article  PubMed  Google Scholar 

  88. Wang CY, Ou HY, Chen MF, Chang TC, Chang CJ. (2014). Enigmatic ectopic fat: prevalence of nonalcoholic fatty pancreas disease and its associated factors in a Chinese population. J Am Heart Assoc.3(1):e000297. doi: https://doi.org/10.1161/JAHA.113.000297

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. Yamazaki H TT, Katanuma A, Kodama Y, Tauchi S, Dohke M, Maguchi H. (2016). Lack of Independent Association Between Fatty Pancreas and Incidence of Type 2 Diabetes 5-Year Japanese Cohort Study. doi: https://doi.org/10.2337/dc16-0074/-/DC1

  90. Jens-Peter Kühn FBJM, Henry Völzke, Scott B. Reeder, Wolfgang Rathmann, Markus M. Lerch, Norbert Hosten, Katrin Hegenscheid, Peter J. Meffert,. (2015). Pancreatic steatosis demonstrated at MR imaging in the general population: clinical relevance.

  91. Wong VW, Wong GL, Yeung DK, et al. (2014). Fatty pancreas, insulin resistance, and beta-cell function: a population study using fat-water magnetic resonance imaging. Am J Gastroenterol.109(4):589-597. doi: https://doi.org/10.1038/ajg.2014.1

    CAS  Article  PubMed  Google Scholar 

  92. Yamazaki H, Tauchi S, Kimachi M, et al. (2018). Independent association between prediabetes and future pancreatic fat accumulation: a 5-year Japanese cohort study. J Gastroenterol.53(7):873-882. doi: https://doi.org/10.1007/s00535-017-1422-2

    Article  PubMed  Google Scholar 

  93. Eckel RH, Kahn SE, Ferrannini E, et al. (2011). Obesity and type 2 diabetes: what can be unified and what needs to be individualized? The Journal of clinical endocrinology and metabolism.96(6):1654-1663. doi: https://doi.org/10.1210/jc.2011-0585

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. Yu TY, Wang CY. (2017). Impact of non-alcoholic fatty pancreas disease on glucose metabolism. J Diabetes Investig.8(6):735-747. doi: https://doi.org/10.1111/jdi.12665

    Article  PubMed  PubMed Central  Google Scholar 

  95. van Raalte DH, van der Zijl NJ, Diamant M. (2010). Pancreatic steatosis in humans: cause or marker of lipotoxicity? Current opinion in clinical nutrition and metabolic care.13(4):478-485. doi: https://doi.org/10.1097/MCO.0b013e32833aa1ef

    CAS  Article  PubMed  Google Scholar 

  96. Lu T, Wang Y, Dou T, Xue B, Tan Y, Yang J. (2019). Pancreatic fat content is associated with β-cell function and insulin resistance in Chinese type 2 diabetes subjects. Endocrine journal.66(3):265-270. doi: https://doi.org/10.1507/endocrj.EJ18-0436

    CAS  Article  PubMed  Google Scholar 

  97. Steven SH, K.G.; Small, P.K.; Woodcock, S.A.; Pucci, A.; Aribisala, B.; Al-Mrabeh, A.; Daly, A.K.;, Batterham RL. (2016). Weight Loss Decreases Excess Pancreatic Triacylglycerol Specifically in Type 2 Diabete. doi: https://doi.org/10.2337/dc15-0750/-/DC1

  98. Gaborit B, Abdesselam I, Kober F, et al. (2015). Ectopic fat storage in the pancreas using 1H-MRS: importance of diabetic status and modulation with bariatric surgery-induced weight loss. Int J Obes (Lond).39(3):480-487. doi: https://doi.org/10.1038/ijo.2014.126

    CAS  Article  Google Scholar 

  99. van der Zijl NJ, Goossens GH, Moors CC, et al. (2011). Ectopic fat storage in the pancreas, liver, and abdominal fat depots: impact on beta-cell function in individuals with impaired glucose metabolism. The Journal of clinical endocrinology and metabolism.96(2):459-467. doi: https://doi.org/10.1210/jc.2010-1722

    CAS  Article  PubMed  Google Scholar 

  100. Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC, Taylor R. (2011). Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia.54(10):2506-2514. doi: https://doi.org/10.1007/s00125-011-2204-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. Ahbab S, Unsal A, Ataoglu HE, Can TS, Kayas D, Savas Y. (2019). Prediabetes and Type 2 Diabetes are Independent Risk Factors for Computed Tomography-Estimated Nonalcoholic Fatty Pancreas Disease. Clinics (Sao Paulo).74:e1337. doi: https://doi.org/10.6061/clinics/2019/e1337

    Article  PubMed Central  Google Scholar 

  102. Wicklow BA, Griffith AT, Dumontet JN, Venugopal N, Ryner LN, McGavock JM. (2015). Pancreatic lipid content is not associated with beta cell dysfunction in youth-onset type 2 diabetes. Can J Diabetes.39(5):398-404. doi: https://doi.org/10.1016/j.jcjd.2015.04.001

    Article  PubMed  Google Scholar 

  103. Begovatz P, Koliaki C, Weber K, et al. (2015). Pancreatic adipose tissue infiltration, parenchymal steatosis and beta cell function in humans. Diabetologia.58(7):1646-1655. doi: https://doi.org/10.1007/s00125-015-3544-5

    CAS  Article  PubMed  Google Scholar 

  104. Heni M, Machann J, Staiger H, et al. (2010). Pancreatic fat is negatively associated with insulin secretion in individuals with impaired fasting glucose and/or impaired glucose tolerance: a nuclear magnetic resonance study. Diabetes/metabolism research and reviews.26(3):200-205. doi: https://doi.org/10.1002/dmrr.1073

    CAS  Article  PubMed  Google Scholar 

  105. Gallagher D, Kelley DE, Yim JE, et al. (2009). Adipose tissue distribution is different in type 2 diabetes. The American journal of clinical nutrition.89(3):807-814. doi: https://doi.org/10.3945/ajcn.2008.26955

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. Lingvay I, Esser V, Legendre JL, et al. (2009). Noninvasive quantification of pancreatic fat in humans. The Journal of clinical endocrinology and metabolism.94(10):4070-4076. doi: https://doi.org/10.1210/jc.2009-0584

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. Xu Y, Cai X, Shi Y, et al. (2020). Normative Pancreatic Stiffness Levels and Related Influences Established by Magnetic Resonance Elastography in Volunteers. J Magn Reson Imaging.52(2):448-458. doi: https://doi.org/10.1002/jmri.27052

    Article  PubMed  PubMed Central  Google Scholar 

  108. Saglam D, Bilgici MC, Kara C, Yilmaz GC, Camlidag I. (2017). Acoustic Radiation Force Impulse Elastography in Determining the Effects of Type 1 Diabetes on Pancreas and Kidney Elasticity in Children. AJR Am J Roentgenol.209(5):1143-1149. doi: https://doi.org/10.2214/AJR.17.18170

    Article  PubMed  Google Scholar 

  109. Mehmet Hamdİ Şahan AÖ, NeŞe Asal, Mİrace Yasemİn Karadenİz Bİlgİlİ, Adİl DoĞan, AŞkin GÜngÜneŞ. (2021). Pancreas and kidney changes in type 2 diabetes patients: The role of diffusion-weighted imaging.

  110. Noda Y, Goshima S, Tanaka K, et al. (2016). Findings in pancreatic MRI associated with pancreatic fibrosis and HbA1c values. J Magn Reson Imaging.43(3):680-687. doi: https://doi.org/10.1002/jmri.25019

    Article  PubMed  Google Scholar 

  111. Abunahel BM, Pontre B, Kumar H, Petrov MS. (2021). Pancreas image mining: a systematic review of radiomics. Eur Radiol.31(5):3447-3467. doi: https://doi.org/10.1007/s00330-020-07376-6

    Article  PubMed  Google Scholar 

  112. Lu CQ, Wang YC, Meng XP, et al. (2019). Diabetes risk assessment with imaging: a radiomics study of abdominal CT. Eur Radiol.29(5):2233-2242. doi: https://doi.org/10.1007/s00330-018-5865-5

    Article  PubMed  Google Scholar 

  113. Jang S, Kim JH, Choi SY, Park SJ, Han JK. (2020). Application of computerized 3D-CT texture analysis of pancreas for the assessment of patients with diabetes. PLoS One.15(1):e0227492. doi: https://doi.org/10.1371/journal.pone.0227492

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Qiang Lu for providing ultrasound imaging.

Funding

No funds were received for this study.

Author information

Authors and Affiliations

Authors

Contributions

Ni Zeng conducted the literature search and wrote the review. Yi Wang and Yue Cheng contributed to acquisition of radiology images. Zixing Huang and Bin Song contributed to conception of the study and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zixing Huang or Bin Song.

Ethics declarations

Conflict of interest

All authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Images are entirely unidentifiable, and there are no details on individuals reported within the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeng, N., Wang, Y., Cheng, Y. et al. Imaging evaluation of the pancreas in diabetic patients. Abdom Radiol 47, 715–726 (2022). https://doi.org/10.1007/s00261-021-03340-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-021-03340-0

Keywords

  • Pancreas
  • Diabetes
  • Computed tomography
  • Magnetic resonance imaging
  • Radiomics