Skip to main content
Log in

Fat-containing pelvic lesions in females

  • Review
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Pelvic tumors are common in females and have a broad differential diagnosis. The clinical management of pelvic tumors varies widely—from observation to surgical resection—and imaging plays a pivotal role in diagnosis and clinical decision-making in these cases. In particular, imaging can help determine the organ of origin and tissue content of these tumors, which are the most important steps to narrowing the differential diagnosis. Fat has a characteristic appearance and is often easily identified on ultrasonography (US), computed tomography (CT), and magnetic resonance imaging (MRI). The amount and distribution of intralesional fat varies in different types of tumors. Macroscopic intralesional fat is often easily recognized by its hyperechoic appearance on US and low attenuation on CT similar to subcutaneous fat. On MRI, macroscopic fat is hyperintense on T1-weighted (T1W) images, with characteristic signal loss on fat-saturated sequences and India-ink artifact on opposed-phase T1W images. Macroscopic fat is the hallmark of teratomas, which are the most common ovarian neoplasms. Uterine lipoleiomyomas, peritoneal loose bodies, intraperitoneal and extraperitoneal primary lipomatous tumors such as lipoma and liposarcomas, and extra-adrenal myelolipomas are other pelvic masses distinguished by the presence of macroscopic fat. However, the imaging diagnosis of pelvic masses containing minimal or microscopic fat, such as immature ovarian teratomas, steroid cell ovarian neoplasms, and extramedullary hematopoiesis, can present a diagnostic challenge owing to their nonspecific appearance on US or CT. Obtaining MRI with in-phase and opposed-phase dual-echo T1W sequences and depicting chemical shift artifacts can be helpful in distinguishing these lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The author(s) declare(s) that they had full access to all of the data in this study and the author(s) take(s) complete responsibility for the integrity of the data and the accuracy of the data analysis.

References:

  1. Dodd, G.D., 3rd and R.F. Budzik, Jr., Lipomatous tumors of the pelvis in women: spectrum of imaging findings. AJR Am J Roentgenol, 1990. 155(2): p. 317–22.

  2. 2.Foti, P.V., et al., MR imaging of ovarian masses: classification and differential diagnosis. Insights Imaging, 2016. 7(1): p. 21-41.

    Article  PubMed  Google Scholar 

  3. 3.Jeong, Y.Y., E.K. Outwater, and H.K. Kang, Imaging evaluation of ovarian masses. Radiographics, 2000. 20(5): p. 1445-70.

    Article  CAS  PubMed  Google Scholar 

  4. 4.Jung, S.E., et al., CT and MR imaging of ovarian tumors with emphasis on differential diagnosis. Radiographics, 2002. 22(6): p. 1305-25.

    Article  PubMed  Google Scholar 

  5. 5.Luczak, J. and M. Baglaj, Ovarian teratoma in children: a plea for collaborative clinical study. J Ovarian Res, 2018. 11(1): p. 75.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.Outwater, E.K., E.S. Siegelman, and J.L. Hunt, Ovarian teratomas: tumor types and imaging characteristics. Radiographics, 2001. 21(2): p. 475-90.

    Article  CAS  PubMed  Google Scholar 

  7. 7.Sahin, H., S. Abdullazade, and M. Sanci, Mature cystic teratoma of the ovary: a cutting edge overview on imaging features. Insights Imaging, 2017. 8(2): p. 227-241.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.Jung, S.E., et al., Xanthogranulomatous oophoritis: MR imaging findings with pathologic correlation. AJR Am J Roentgenol, 2002. 178(3): p. 749-51.

    Article  PubMed  Google Scholar 

  9. 9.Maruyama, M., et al., MR Imaging of Xanthogranulomatous Oophoritis. Magn Reson Med Sci, 2018. 17(3): p. 191-192.

    Article  PubMed  Google Scholar 

  10. 10.Jiang, W., et al., Benign and malignant ovarian steroid cell tumors, not otherwise specified: case studies, comparison, and review of the literature. J Ovarian Res, 2013. 6: p. 53.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.Saida, T., Y.O. Tanaka, and M. Minami, Steroid cell tumor of the ovary, not otherwise specified: CT and MR findings. AJR Am J Roentgenol, 2007. 188(4): p. W393-4.

    Article  PubMed  Google Scholar 

  12. 12.Liu, A.X., et al., Steroid cell tumors, not otherwise specified (NOS), in an accessory ovary: a case report and literature review. Gynecol Oncol, 2005. 97(1): p. 260-2.

    Article  PubMed  Google Scholar 

  13. 64.Kocaoglu, M. and D.P. Frush, Pediatric presacral masses. Radiographics, 2006. 26(3): p. 833-57.

    Article  PubMed  Google Scholar 

  14. 13.Sakamoto, K., et al., MR diagnosis of steroid cell tumor of the ovary: value of chemical shift imaging. Magn Reson Med Sci, 2009. 8(4): p. 193-5.

    Article  PubMed  Google Scholar 

  15. 14.Shaaban, A.M., et al., Ovarian malignant germ cell tumors: cellular classification and clinical and imaging features. Radiographics, 2014. 34(3): p. 777-801.

    Article  PubMed  Google Scholar 

  16. 15.Faten, H., et al., Ovarian Steroid Cell Tumor (Not Otherwise Specified): A Case Report of Ovarian Hyperandrogenism. Case Rep Oncol Med, 2020. 2020: p. 6970823.

    PubMed  PubMed Central  Google Scholar 

  17. 16.Haroon, S., et al., Ovarian steroid cell tumor, not otherwise specified: a clinicopathological and immunohistochemical experience of 12 cases. J Obstet Gynaecol Res, 2015. 41(3): p. 424-31.

    Article  PubMed  Google Scholar 

  18. 17.Das, A., S. Panda, and A.S. Singh, Steroid cell tumor: A rare virilizing ovarian tumor. J Cancer Res Ther, 2015. 11(3): p. 660.

    Article  PubMed  Google Scholar 

  19. 18.Wang, P.H., et al., Steroid cell tumors of the ovary: clinical, ultrasonic, and MRI diagnosis--a case report. Eur J Radiol, 1998. 26(3): p. 269-73.

    Article  CAS  PubMed  Google Scholar 

  20. Dodd, G.D., 3rd and R.F. Budzik, Jr., Lipomatous uterine tumors: diagnosis by ultrasound, CT, and MR. J Comput Assist Tomogr, 1990. 14(4): p. 629–32.

  21. Hertzberg, B.S., et al., Lipomatous uterine masses: potential to mimic ovarian dermoids on endovaginal sonography. J Ultrasound Med, 1995. 14(9): p. 689–92; quiz 693–4.

  22. 21.Tsushima, Y., T. Kita, and K. Yamamoto, Uterine lipoleiomyoma: MRI, CT and ultrasonographic findings. Br J Radiol, 1997. 70(838): p. 1068-70.

    Article  CAS  PubMed  Google Scholar 

  23. 22.Kitajima, K., et al., MRI findings of uterine lipoleiomyoma correlated with pathologic findings. AJR Am J Roentgenol, 2007. 189(2): p. W100-4.

    Article  PubMed  Google Scholar 

  24. 23.Arikawa, S., et al., Significance of the "beak sign" in the differential diagnosis of uterine lipoleiomyoma from ovarian dermoid cyst. Kurume Med J, 2006. 53(1-2): p. 37-40.

    Article  PubMed  Google Scholar 

  25. 24.Nougaret, S., et al., MRI of Tumors and Tumor Mimics in the Female Pelvis: Anatomic Pelvic Space-based Approach. Radiographics, 2019. 39(4): p. 1205-1229.

    Article  PubMed  Google Scholar 

  26. A Kamaya, M.P.F.T.S.D., Imaging manifestations of abdominal fat necrosis and its mimics. Radiographics, 2011. 31(7): p. 2021–2034.

  27. 26.Gayer, G., I. Petrovitch, and R.B. Jeffrey, Foreign objects encountered in the abdominal cavity at CT. Radiographics, 2011. 31(2): p. 409-28.

    Article  PubMed  Google Scholar 

  28. 27.Ghosh, P., et al., Peritoneal mice implicated in intestinal obstruction: report of a case and review of the literature. J Clin Gastroenterol, 2006. 40(5): p. 427-30.

    Article  PubMed  Google Scholar 

  29. 28.Huang, C.H., et al., Numerous peritoneal loose bodies with ileus. Histopathology, 2011. 58(2): p. 318-9.

    Article  PubMed  Google Scholar 

  30. 29.Huang, Q., et al., Two giant peritoneal loose bodies were simultaneously found in one patient: A case report and review of the literature. Int J Surg Case Rep, 2017. 36: p. 74-77.

    Article  PubMed  PubMed Central  Google Scholar 

  31. 30.Zhang, H., et al., Giant peritoneal loose body in the pelvic cavity confirmed by laparoscopic exploration: a case report and review of the literature. World J Surg Oncol, 2015. 13: p. 118.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 37.Paunipagar, B.K., et al., Ultrasound features of deep-seated lipomas. Insights Imaging, 2010. 1(3): p. 149-153.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 38.Gupta, P., et al., Spectrum of Fat-containing Soft-Tissue Masses at MR Imaging: The Common, the Uncommon, the Characteristic, and the Sometimes Confusing. Radiographics, 2016. 36(3): p. 753-66.

    Article  PubMed  Google Scholar 

  34. 39.Drylewicz, M.R., et al., Fatty masses of the abdomen and pelvis and their complications. Abdom Radiol (NY), 2019. 44(4): p. 1535-1553.

    Article  Google Scholar 

  35. 40.Kransdorf, M.J., et al., Imaging of fatty tumors: distinction of lipoma and well-differentiated liposarcoma. Radiology, 2002. 224(1): p. 99-104.

    Article  PubMed  Google Scholar 

  36. 32.Drevelegas, A., M. Pilavaki, and D. Chourmouzi, Lipomatous tumors of soft tissue: MR appearance with histological correlation. Eur J Radiol, 2004. 50(3): p. 257-67.

    Article  CAS  PubMed  Google Scholar 

  37. 41.Papathanassiou, Z.G., et al., Imaging of hibernomas: A retrospective study on twelve cases. Clin Sarcoma Res, 2011. 1(1): p. 3.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 42.Pandya, A. and A.P. Wasnik, Presacral hibernoma: Radiologic-pathologic correlation. Indian J Radiol Imaging, 2011. 21(4): p. 270-3.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tsapralis, N., et al., Unusual "Dumbbell"-Shaped Hibernoma. Plast Reconstr Surg Glob Open, 2019. 7(4): p. e2142.

  40. 44.Cohade, C., K.A. Mourtzikos, and R.L. Wahl, "USA-Fat": prevalence is related to ambient outdoor temperature-evaluation with 18F-FDG PET/CT. J Nucl Med, 2003. 44(8): p. 1267-70.

    PubMed  Google Scholar 

  41. 46.Kim, J.D. and H.W. Lee, Hibernoma: Intense Uptake on F18-FDG PET/CT. Nucl Med Mol Imaging, 2012. 46(3): p. 218-22.

    Article  PubMed  PubMed Central  Google Scholar 

  42. 51.Fisher, M.F., et al., Abdominal lipoblastomatosis: radiographic, echographic, and computed tomographic findings. Radiology, 1981. 138(3): p. 593-6.

    Article  CAS  PubMed  Google Scholar 

  43. 52.Moholkar, S., N.J. Sebire, and D.J. Roebuck, Radiological-pathological correlation in lipoblastoma and lipoblastomatosis. Pediatr Radiol, 2006. 36(8): p. 851-6.

    Article  PubMed  Google Scholar 

  44. 34.Levy, A.D., M.A. Manning, and M.M. Miettinen, Soft-Tissue Sarcomas of the Abdomen and Pelvis: Radiologic-Pathologic Features, Part 2-Uncommon Sarcomas. Radiographics, 2017. 37(3): p. 797-812.

    Article  PubMed  Google Scholar 

  45. 47.Sung, M.S., et al., Myxoid liposarcoma: appearance at MR imaging with histologic correlation. Radiographics, 2000. 20(4): p. 1007-19.

    Article  CAS  PubMed  Google Scholar 

  46. Wang, L., et al., Pleomorphic liposarcoma: An analysis of 6 case reports and literature review. Medicine (Baltimore), 2018. 97(8): p. e9986.

  47. 36.Shaaban, A.M., et al., Fat-containing Retroperitoneal Lesions: Imaging Characteristics, Localization, and Differential Diagnosis. Radiographics, 2016. 36(3): p. 710-34.

    Article  PubMed  Google Scholar 

  48. 49.Hong, S.H., et al., Dedifferentiated liposarcoma of retroperitoneum: spectrum of imaging findings in 15 patients. Clin Imaging, 2010. 34(3): p. 203-10.

    Article  PubMed  Google Scholar 

  49. Tateishi, U., et al., Primary dedifferentiated liposarcoma of the retroperitoneum. Prognostic significance of computed tomography and magnetic resonance imaging features. J Comput Assist Tomogr, 2003. 27(5): p. 799–804.

  50. 53.Itani, M., A.P. Wasnik, and J.F. Platt, Radiologic-pathologic correlation in extra-adrenal myelolipoma. Abdom Imaging, 2014. 39(2): p. 394-7.

    Article  PubMed  Google Scholar 

  51. 54.Tokuyama, N., et al., Incidental Presacral Myelolipoma Resembling the Liposarcoma: A Case Report and Literature Review. Case Rep Urol, 2016. 2016: p. 6510930.

    PubMed  PubMed Central  Google Scholar 

  52. 55.Patel, N., et al., Imaging of presacral masses--a multidisciplinary approach. Br J Radiol, 2016. 89(1061): p. 20150698.

    Article  PubMed  PubMed Central  Google Scholar 

  53. 56.Wadood, D.Q., et al., A rare case of co-existing adrenal and pelvic myelolipomas. Radiol Case Rep, 2018. 13(5): p. 999-1002.

    Article  PubMed  PubMed Central  Google Scholar 

  54. 57.Littrell, L.A., et al., Extra-adrenal myelolipoma and extramedullary hematopoiesis: Imaging features of two similar benign fat-containing presacral masses that may mimic liposarcoma. Eur J Radiol, 2017. 93: p. 185-194.

    Article  PubMed  Google Scholar 

  55. 58.Fowler, M.R., et al., Extra-adrenal myelolipomas compared with extramedullary hematopoietic tumors: a case of presacral myelolipoma. Am J Surg Pathol, 1982. 6(4): p. 363-74.

    Article  CAS  PubMed  Google Scholar 

  56. 45.Smith, C.S., et al., False-positive findings on 18F-FDG PET/CT: differentiation of hibernoma and malignant fatty tumor on the basis of fluctuating standardized uptake values. AJR Am J Roentgenol, 2008. 190(4): p. 1091-6.

    Article  PubMed  Google Scholar 

  57. 59.Ginzel, A.W., et al., Mass-like extramedullary hematopoiesis: imaging features. Skeletal Radiol, 2012. 41(8): p. 911-6.

    Article  PubMed  Google Scholar 

  58. 60.Roberts, A.S., et al., Extramedullary haematopoiesis: radiological imaging features. Clin Radiol, 2016. 71(9): p. 807-14.

    Article  CAS  PubMed  Google Scholar 

  59. 61.Avni, F.E., et al., MR imaging of fetal sacrococcygeal teratoma: diagnosis and assessment. AJR Am J Roentgenol, 2002. 178(1): p. 179-83.

    Article  PubMed  Google Scholar 

  60. 62.Danzer, E., et al., Diagnosis and characterization of fetal sacrococcygeal teratoma with prenatal MRI. AJR Am J Roentgenol, 2006. 187(4): p. W350-6.

    Article  PubMed  Google Scholar 

  61. 63.Yoon, H.M., et al., Sacrococcygeal teratomas in newborns: a comprehensive review for the radiologists. Acta Radiol, 2018. 59(2): p. 236-246.

    Article  PubMed  Google Scholar 

  62. 65.Yoo, E., et al., A case of mesenteric cystic lymphangioma: fat saturation and chemical shift MR imaging. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, 2006. 23(1): p. 77-80.

    Article  Google Scholar 

  63. 31.Akcalar, S., et al., Imaging findings of lipomatosis: a comprehensive review. Jpn J Radiol, 2013. 31(1): p. 1-8.

    Article  PubMed  Google Scholar 

  64. 33.Kim, T., et al., CT and MR imaging of abdominal liposarcoma. AJR Am J Roentgenol, 1996. 166(4): p. 829-33.

    Article  CAS  PubMed  Google Scholar 

  65. 35.Pickhardt, P.J. and S. Bhalla, Primary neoplasms of peritoneal and sub-peritoneal origin: CT findings. Radiographics, 2005. 25(4): p. 983-95.

    Article  PubMed  Google Scholar 

Download references

Funding

No financial support/funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this paper with conception and design of the study, literature review and analysis, drafting and critical revision and editing, and final approval of the final version.

Corresponding author

Correspondence to Khaled M. Elsayes.

Ethics declarations

Conflict of interest

No potential conflicts of interest.

Ethical approval

Compliance with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattahi, N., Moeini, A., Morani, A.C. et al. Fat-containing pelvic lesions in females. Abdom Radiol 47, 362–377 (2022). https://doi.org/10.1007/s00261-021-03299-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-021-03299-y

Keywords

Navigation