Skip to main content

Prediction of placenta accreta spectrum using texture analysis on coronal and sagittal T2-weighted imaging

Abstract

Purpose

To separately perform visual and texture analyses of the axial, coronal, and sagittal planes of T2-weighted images and identify the optimal method for differentiating between the normal placenta and placenta accreta spectrum (PAS).

Methods

Eighty consecutive patients (normal group, n = 50; PAS group, n = 30) underwent preoperative MRI. A scoring system (0–2) was used to evaluate the degree of abnormality observed in visual analysis (bulging, abnormal vascularity, T2 dark band, placental heterogeneity). The axial, coronal, and sagittal planes were manually segmented separately to obtain texture features, and seven combinations were obtained: axial; coronal; sagittal; axial and coronal; axial and sagittal; coronal and sagittal; and axial, coronal, and sagittal. Feature selection using the least absolute shrinkage and selection operator method and model construction using a support vector machine algorithm with k-fold cross-validation were performed. AUC was used to evaluate diagnostic performance.

Results

The AUC of visual analysis was 0.75. The model ‘coronal and sagittal’ had the highest AUC (0.98) amongst the seven combinations. The fivefold cross-validation for the model ‘coronal and sagittal’ showed AUCs of 0.85 and 0.97 in training and validation sets, respectively. The AUC of the model ‘coronal and sagittal’ for all subjects was significantly higher than that of visual analysis (0.98 vs. 0.75; p < 0.0001).

Conclusion

The model ‘coronal and sagittal’ can accurately differentiate between the normal placenta and PAS, with a significantly better diagnostic performance than visual analysis. Texture analysis is an optimal method for differentiating between the normal placenta and PAS.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

PAS:

Placenta accreta spectrum

References

  1. 1.

    1. Do QN, Lewis MA, Xi Y, et al (2020) MRI of the Placenta Accreta Spectrum (PAS) Disorder: Radiomics Analysis Correlates With Surgical and Pathological Outcome. J Magn Reson Imaging 51:936–946. https://doi.org/https://doi.org/10.1002/jmri.26883

    Article  PubMed  Google Scholar 

  2. 2.

    2. Kilcoyne A, Shenoy-Bhangle AS, Roberts DJ, et al (2017) MRI of Placenta Accreta, Placenta Increta, and Placenta Percreta: Pearls and Pitfalls. American Journal of Roentgenology 208:214–221. https://doi.org/https://doi.org/10.2214/AJR.16.16281

    Article  PubMed  Google Scholar 

  3. 3.

    3. Jauniaux E, Chantraine F, Silver RM, et al (2018) FIGO consensus guidelines on placenta accreta spectrum disorders: Epidemiology,. Int J Gynecol Obstet 140:265–273. https://doi.org/https://doi.org/10.1002/ijgo.12407

    Article  Google Scholar 

  4. 4.

    4. Kapoor H, Hanaoka M, Dawkins A, Khurana A (2021) Review of MRI imaging for placenta accreta spectrum: Pathophysiologic insights, imaging signs, and recent developments. Placenta 104:31–39. https://doi.org/https://doi.org/10.1016/j.placenta.2020.11.004

    Article  PubMed  Google Scholar 

  5. 5.

    5. Garmi G, Salim R (2012) Epidemiology, Etiology, Diagnosis, and Management of Placenta Accreta. Obstetrics and Gynecology International 2012:1–7. https://doi.org/https://doi.org/10.1155/2012/873929

    Article  Google Scholar 

  6. 6.

    6. Zaghal AA, Hussain HK, Berjawi GA (2019) MRI evaluation of the placenta from normal variants to abnormalities of implantation and malignancies. J Magn Reson Imaging 50:1702–1717. https://doi.org/https://doi.org/10.1002/jmri.26764

    Article  PubMed  Google Scholar 

  7. 7.

    7. Ueno Y, Kitajima K, Kawakami F, et al (2014) Novel MRI finding for diagnosis of invasive placenta praevia: evaluation of findings for 65 patients using clinical and histopathological correlations. Eur Radiol 24:881–888. https://doi.org/https://doi.org/10.1007/s00330-013-3076-7

    Article  PubMed  Google Scholar 

  8. 8.

    8. Delli Pizzi A, Tavoletta A, Narciso R, et al (2019) Prenatal planning of placenta previa: diagnostic accuracy of a novel MRI-based prediction model for placenta accreta spectrum (PAS) and clinical outcome. Abdom Radiol 44:1873–1882. https://doi.org/https://doi.org/10.1007/s00261-018-1882-8

    Article  Google Scholar 

  9. 9.

    9. Oyelese Y, Smulian JC (2006) Placenta Previa, Placenta Accreta, and Vasa Previa. Obstetrics & Gynecology 107:927-941

    Article  Google Scholar 

  10. 10.

    10. D’Antonio F, Iacovella C, Palacios-Jaraquemada J, et al (2014) Prenatal identification of invasive placentation using magnetic resonance imaging: systematic review and meta-analysis. Ultrasound Obstet Gynecol 44:8–16. https://doi.org/https://doi.org/10.1002/uog.13327

    Article  PubMed  Google Scholar 

  11. 11.

    11. Siauve N (2019) How and why should the radiologist look at the placenta? Eur Radiol 29:6149–6151. https://doi.org/https://doi.org/10.1007/s00330-019-06373-8

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    12. Sato T, Mori N, Hasegawa O, et al (2017) Placental recess accompanied by a T2 dark band: a new finding for diagnosing placental invasion. Abdom Radiol 42:2146–2153. https://doi.org/https://doi.org/10.1007/s00261-017-1100-0

    Article  Google Scholar 

  13. 13.

    13. Chen E, Mar WA, Horowitz JM, et al (2019) Texture analysis of placental MRI: can it aid in the prenatal diagnosis of placenta accreta spectrum? Abdom Radiol 44:3175–3184. https://doi.org/https://doi.org/10.1007/s00261-019-02104-1

    Article  Google Scholar 

  14. 14.

    14. Baughman WC, Corteville JE, Shah RR (2008) Placenta Accreta: Spectrum of US and MR Imaging Findings. RadioGraphics 28:1905–1916. https://doi.org/https://doi.org/10.1148/rg.287085060

    Article  PubMed  Google Scholar 

  15. 15.

    15. Sun H, Qu H, Chen L, et al (2019) Identification of suspicious invasive placentation based on clinical MRI data using textural features and automated machine learning. Eur Radiol 29:6152–6162. https://doi.org/https://doi.org/10.1007/s00330-019-06372-9

    Article  PubMed  Google Scholar 

  16. 16.

    16. Hecht JL, Baergen R, Ernst LM, et al (2020) Classification and reporting guidelines for the pathology diagnosis of placenta accreta spectrum (PAS) disorders: recommendations from an expert panel. Mod Pathol 33:2382–2396. https://doi.org/https://doi.org/10.1038/s41379-020-0569-1

    Article  PubMed  Google Scholar 

  17. 17.

    17. Lambin P, Rios-Velazquez E, Leijenaar R, et al (2012) Radiomics: Extracting more information from medical images using advanced feature analysis. European Journal of Cancer 48:441–446. https://doi.org/https://doi.org/10.1016/j.ejca.2011.11.036

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    18. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology 278:563–577. https://doi.org/https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  19. 19.

    19. Castellano G, Bonilha L, Li LM, Cendes F (2004) Texture analysis of medical images. Clinical Radiology 59:1061–1069. https://doi.org/https://doi.org/10.1016/j.crad.2004.07.008

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    20. Do QN, Lewis MA, Madhuranthakam AJ, et al (2019) Texture analysis of magnetic resonance images of the human placenta throughout gestation: A feasibility study. PLoS ONE 14:e0211060. https://doi.org/https://doi.org/10.1371/journal.pone.0211060

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    21. Romeo V, Ricciardi C, Cuocolo R, et al (2019) Machine learning analysis of MRI-derived texture features to predict placenta accreta spectrum in patients with placenta previa. Magnetic Resonance Imaging 64:71–76. https://doi.org/https://doi.org/10.1016/j.mri.2019.05.017

    Article  PubMed  Google Scholar 

  22. 22.

    22. Blaicher W, Brugger PC, Mittermayer C, et al (2006) Magnetic resonance imaging of the normal placenta. European Journal of Radiology 57:256–260. https://doi.org/https://doi.org/10.1016/j.ejrad.2005.11.025

    Article  PubMed  Google Scholar 

  23. 23.

    23. Chen X, Shan R, Zhao L, et al (2018) Invasive placenta previa: Placental bulge with distorted uterine outline and uterine serosal hypervascularity at 1.5T MRI – useful features for differentiating placenta percreta from placenta accreta. Eur Radiol 28:708–717. https://doi.org/https://doi.org/10.1007/s00330-017-4980-z

    Article  PubMed  Google Scholar 

  24. 24.

    24. Horowitz JM, Berggruen S, McCarthy RJ, et al (2015) When Timing Is Everything: Are Placental MRI Examinations Performed Before 24 Weeks’ Gestational Age Reliable? American Journal of Roentgenology 205:685–692. https://doi.org/https://doi.org/10.2214/AJR.14.14134

    Article  PubMed  Google Scholar 

  25. 25.

    25. Lax A, Prince MR, Mennitt KW, et al (2007) The value of specific MRI features in the evaluation of suspected placental invasion. Magnetic Resonance Imaging 25:87–93. https://doi.org/https://doi.org/10.1016/j.mri.2006.10.007

    Article  PubMed  Google Scholar 

  26. 26.

    26. C Nioche, F Orlhac, S Boughdad, S Reuzé, J Goya-Outi, C Robert, C Pellot-Barakat, M Soussan, F Frouin, and I Buvat. LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Research 2018; 78(16):4786-4789 https://doi.org/https://doi.org/10.1158/0008-5472.CAN-18-0125

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    27. Landis JR, Koch GG (1977) The Measurement of Observer Agreement for Categorical Data. Biometrics 33:159. https://doi.org/https://doi.org/10.2307/2529310

    CAS  Article  Google Scholar 

  28. 28.

    28. Song J, Hu Q, Ma Z, et al (2021) Feasibility of T2WI-MRI-based radiomics nomogram for predicting normal-sized pelvic lymph node metastasis in cervical cancer patients. Eur Radiol. https://doi.org/https://doi.org/10.1007/s00330-021-07735-x

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    29. Alhamzawi R, Ali HTM (2018) The Bayesian adaptive lasso regression. Mathematical Biosciences 303:75–82. https://doi.org/https://doi.org/10.1016/j.mbs.2018.06.004

    Article  PubMed  Google Scholar 

  30. 30.

    30. Mori N, Abe H, Mugikura S, et al (2021) Discriminating low-grade ductal carcinoma in situ (DCIS) from non-low-grade DCIS or DCIS upgraded to invasive carcinoma: effective texture features on ultrafast dynamic contrast-enhanced magnetic resonance imaging. Breast Cancer. https://doi.org/https://doi.org/10.1007/s12282-021-01257-6

    Article  PubMed  Google Scholar 

  31. 31.

    31. Dai H, Bian Y, Wang L, Yang J (2021) Support Vector Machine-Based Backprojection Algorithm for Detection of Gastric Cancer Lesions with Abdominal Endoscope Using Magnetic Resonance Imaging Images. Scientific Programming 2021:1–8. https://doi.org/https://doi.org/10.1155/2021/9964203

    Article  Google Scholar 

  32. 32.

    32. Zhang M-H, Ma J-S, Shen Y, Chen Y (2016) Optimal classification for the diagnosis of duchenne muscular dystrophy images using support vector machines. Int J CARS 11:1755–1763. https://doi.org/https://doi.org/10.1007/s11548-015-1312-0

    Article  Google Scholar 

  33. 33.

    SAS Institute Inc. 2019. JMP® 15 Predictive and Specialized Modeling. Cary, NC: SAS Institute Inc. https://www.jmp.com/getstarted

  34. 34.

    34. Srisajjakul S, Prapaisilp P, Bangchokdee S (2021) Magnetic Resonance Imaging of Placenta Accreta Spectrum: A Step-by-Step Approach. Korean J Radiol 22:198. https://doi.org/https://doi.org/10.3348/kjr.2020.0580

    Article  PubMed  Google Scholar 

  35. 35.

    35. Jha P, Pōder L, Bourgioti C, et al (2020) Society of Abdominal Radiology (SAR) and European Society of Urogenital Radiology (ESUR) joint consensus statement for MR imaging of placenta accreta spectrum disorders. Eur Radiol 30:2604–2615. https://doi.org/https://doi.org/10.1007/s00330-019-06617-7

    Article  PubMed  Google Scholar 

  36. 36.

    36. Bour L, Placé V, Bendavid S, et al (2014) Suspected invasive placenta: evaluation with magnetic resonance imaging. Eur Radiol 24:3150–3160. https://doi.org/https://doi.org/10.1007/s00330-014-3354-z

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study has received funding by JSPS (Japan Society for the Promotion of Science) KAKENHI 18K07742.

Funding

JSPS KAKENHI 18K07742.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Naoko Mori.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Ethical approval

This study was approved by the Institutional Review Board (IRB) of Tohoku University Hospital, Sendai, Japan.

Consent to participate

Informed consent was waived.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Mori, N., Mugikura, S. et al. Prediction of placenta accreta spectrum using texture analysis on coronal and sagittal T2-weighted imaging. Abdom Radiol 46, 5344–5352 (2021). https://doi.org/10.1007/s00261-021-03226-1

Download citation

Keywords

  • Placenta accreta spectrum
  • Magnetic resonance imaging
  • Texture analysis
  • Visual analysis