Skip to main content

Advertisement

Log in

Evaluation of pediatric hydronephrosis using deep learning quantification of fluid-to-kidney-area ratio by ultrasonography

  • Kidneys, Ureters, Bladder, Retroperitoneum
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

Hydronephrosis is the dilation of the pelvicalyceal system due to the urine flow obstruction in one or both kidneys. Conventionally, renal pelvis anterior–posterior diameter (APD) was used for quantifying hydronephrosis in medical images (e.g., ultrasound, CT, and functional MRI). Our study aimed to automatically detect and quantify the fluid and kidney areas on ultrasonography, using a deep learning approach.

Methods

An attention-Unet was used to segment the kidney and the dilated pelvicalyceal system with fluid. The gold standard for diagnosing hydronephrosis was the APD > 1.0 cm. For semi-quantification, we proposed a fluid-to-kidney-area ratio measurement, i.e., \(\frac{{{\text{renal~pelvicalyceal~area~with~fluid}}}}{{{\text{~kidney~area}}}}\), as a deep learning-derived biomarker. Dice coefficient, confusion matrix, ROC curve, and Z-test were used to evaluate the model performance. Linear regression was applied to obtain the fluid-to-kidney-area ratio cutoff for detecting hydronephrosis.

Results

For regional kidney segmentation, the Dice coefficients were 0.92 and 0.83 for the kidney and dilated pelvicalyceal system, respectively. The sensitivity and specificity of detecting dilated pelvicalyceal system were 0.99 and 0.83, respectively. The linear equation was fluid-to-kidney-area ratio = (0.213 ± 0.004) × APD (in cm) for 95% confidence interval on the slope with R2 = 0.87. The fluid-to-kidney-area ratio cutoff for detecting hydronephrosis was 0.213. The sensitivity and specificity for detecting hydronephrosis were 0.90 and 0.80, respectively.

Conclusion

Our study confirmed the feasibility of deep learning characterization of the kidney and fluid, showing an automatic pediatric hydronephrosis detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

APD:

Anterior–posterior diameter

UTI:

Urinary tract infection

CAP:

Continuous antibiotic prophylaxis

CKD:

Chronic kidney disease

SFU:

Society for fetal urology

UTD:

Urinary tract dilation

SAM:

Active shape models

AUC:

Area under the curve

References

  1. Riccabona, M., Assessment and management of newborn hydronephrosis. World J Urol, 2004. 22(2): p. 73-78

    PubMed  Google Scholar 

  2. Skoog, S.J., et al., Pediatric vesicoureteral reflux guidelines panel summary report: clinical practice guidelines for screening siblings of children with vesicoureteral reflux and neonates/infants with prenatal hydronephrosis. J Urol, 2010. 184(3): p. 1145-1151.

    Article  Google Scholar 

  3. Walsh, T.J., et al., Antenatal Hydronephrosis and the Risk of Pyelonephritis Hospitalization During the First Year of Life. Urology, 2007. 69(5): p. 970-974.

    Article  Google Scholar 

  4. Silay, M.S., et al., Role of antibiotic prophylaxis in antenatal hydronephrosis: A systematic review from the European Association of Urology/European Society for Paediatric Urology Guidelines Panel. J Pediatr Urol, 2017. 13(3): p. 306-315.

    Article  Google Scholar 

  5. Sencan, A., et al., Urinary tract infection and vesicoureteral reflux in children with mild antenatal hydronephrosis. J Pediatr Urol, 2014. 10(6):1008-1013.

    Article  CAS  Google Scholar 

  6. Braga, L.H., et al., Antibiotic prophylaxis for urinary tract infections in antenatal hydronephrosis. Pediatrics, 2013. 131(1): p. e251-e261.

    Article  Google Scholar 

  7. Chevalier, R.L., et al., Mechanisms of renal injury and progression of renal disease in congenital obstructive nephropathy. Pediatr Nephrol, 2010. 25(4): p. 687-697.

    Article  Google Scholar 

  8. Liu, S., et al., Deep Learning in Medical Ultrasound Analysis: A Review. Engineering, 2019. 5(2): p. 261-275.

    Article  Google Scholar 

  9. Fernbach, S.K., M. Maizels, and J.J. Conway, Ultrasound grading of hydronephrosis: Introduction to the system used by the society for fetal urology. Pediatr Radiol, 1993. 23(6): p. 478-480.

    Article  CAS  Google Scholar 

  10. Sidhu, G., J. Beyene, and N.D. Rosenblum, Outcome of isolated antenatal hydronephrosis: a systematic review and meta-analysis. Pediatr Nephrol, 2005. 21(2): p. 218-224.

    Article  Google Scholar 

  11. Cheng, A.M., et al., Outcome of Isolated Antenatal Hydronephrosis. Arch Pediatr Adolesc Med, 2004. 158(1): p. 38-40.

    Article  Google Scholar 

  12. Nguyen, H.T., et al., Multidisciplinary consensus on the classification of prenatal and postnatal urinary tract dilation (UTD classification system). J Pediatr Urol, 2014. 10(6): p. 982-998.

    Article  Google Scholar 

  13. P H Arger, B.G.C., M C Mintz, H P Snyder, T Camardese, R L Arenson, S G Gabbe, L Aquino, Routine fetal genitourinary tract screening. Radiology, 1985 156.

    Article  CAS  Google Scholar 

  14. Onen, A., Grading of Hydronephrosis: An Ongoing Challenge. Frontiers in Pediatrics, 2020. 8(458).

    Article  Google Scholar 

  15. Onen, A., An alternative grading system to refine the criteria for severity of hydronephrosis and optimal treatment guidelines in neonates with primary UPJ-type hydronephrosis. Journal of Pediatric Urology, 2007(3): p. 200-205.

    Article  Google Scholar 

  16. Vemulakonda, V.M., et al., Inter-rater reliability of postnatal ultrasound interpretation in infants with congenital hydronephrosis. Int Urol Nephrol, 2015. 47(9): p. 1457-1461.

    Article  CAS  Google Scholar 

  17. Longpre, M., et al., Prediction of the outcome of antenatally diagnosed hydronephrosis: A multivariable analysis. J Pediatr Urol, 2012. 8(2): p. 135-139.

    Article  Google Scholar 

  18. Bouzada, M.C.F., et al., Diagnostic accuracy of fetal renal pelvis anteroposterior diameter as a predictor of uropathy: a prospective study: Diagnostic accuracy of fetal renal pelvis diameter. Ultrasound in obstetrics & gynecology, 2004. 24(7): p. 745-749.

    Article  CAS  Google Scholar 

  19. Arora, S., et al., Predictors for the need of surgery in antenatally detected hydronephrosis due to UPJ obstruction – A prospective multivariate analysis. J Pediatr Urol, 2015. 11(5): p. 248.e1-248.e5.

    Article  CAS  Google Scholar 

  20. Dos Santos, J., et al., A New Grading System for the Management of Antenatal Hydronephrosis. Clin J Am Soc Nephrol, 2015. 10(10): p. 1783-1790.

    Article  Google Scholar 

  21. Sadeghi-Bojd, S., et al., Postnatal Evaluation and Outcome of Prenatal Hydronephrosis. Iran J Pediatr, 2016. 26(2): p. e3667-e3667.

    PubMed  PubMed Central  Google Scholar 

  22. Conway, J.J. and M. Maizels, The "well tempered" diuretic renogram: a standard method to examine the asymptomatic neonate with hydronephrosis or hydroureteronephrosis. A report from combined meetings of The Society for Fetal Urology and members of The Pediatric Nuclear Medicine Council--The Society of Nuclear Medicine. J Nucl Med, 1992. 33(11): p. 2047-2051.

    CAS  PubMed  Google Scholar 

  23. Blachar, A., et al., Clinical outcome and follow-up of prenatal hydronephrosis. Pediatr Nephrol, 1994. 8(1): p. 30-35.

    Article  CAS  Google Scholar 

  24. Grignon, A., et al., Urinary tract dilatation in utero: classification and clinical applications. Radiology, 1986. 160(3): p. 645-7.

    Article  CAS  Google Scholar 

  25. Andrzej Paweł Wieczorek, M.M.W.a.J.F.T., Errors in the ultrasound diagnosis of the kidneys, ureters and urinary bladder. Journal of Ultrasound, 2013. 13: p. 308-318.

    Google Scholar 

  26. Hermsen, M., et al., Deep Learning–Based Histopathologic Assessment of Kidney Tissue. J Am Soc Nephrol, 2019. 30(10): p. 1968-1979.

    Article  Google Scholar 

  27. Sabanayagam, C., et al., A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations. Lancet Digit Health, 2020. 2(6): p. e295-e302.

    Article  Google Scholar 

  28. Ginley, B., et al., Computational Segmentation and Classification of Diabetic Glomerulosclerosis. J Am Soc Nephrol, 2019. 30(10): p. 1953-1967.

    Article  CAS  Google Scholar 

  29. Makino, M., et al., Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning. Sci Rep, 2019. 9(1): p. 11862-9.

    Article  Google Scholar 

  30. Khamparia, A., et al., KDSAE: Chronic kidney disease classification with multimedia data learning using deep stacked autoencoder network. Multimedia tools and applications, 2019: p. 1-16.

    Article  Google Scholar 

  31. Chin-Chi Kuo, C.-M.C., Kuan-Ting Liu, Wei-Kai Lin, Hsiu-Yin Chiang, Chih-Wei Chung, Meng-Ru Ho, Pei-Ran Sun, Rong-Lin Yang & Kuan-Ta Chen Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning. npj Digital Medicine, 2019.

    Article  Google Scholar 

  32. Almarashi, A., M. Alghamdi, and I. Mechai, A new mathematical model for diagnosing chronic diseases (kidney failure) using ANN. Cogent Mathematics & Statistics, 2018. 5(1): p. 1559457.

    Article  Google Scholar 

  33. Ronneberger, O., Fischer, P., Brox, T., U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention, 2015. pp. 234–241. https://doi.org/10.1007/978-3-319-24574-4_28.

  34. O Oktay, J. Schlemper, LL Folgoc, M Lee, M Heinrich, K Misawa, K Mori, S McDonagh, NY Hammerla, B Kainz, B Glocker, D Rueckert, Attention U-Net: Learning Where to Look for the Pancreas. 2018, arXiv:1804.03999.

  35. Rathnayaka, P., et al., Kidney Tumor Detection using Attention based U-Net. 2019, University of Minnesota Libraries Publishing. https://doi.org/10.24926/548719.079.

  36. Yin, S., et al., Automatic kidney segmentation in ultrasound images using subsequent boundary distance regression and pixelwise classification networks. Med Image Anal, 2020. 60: p. 101602-101602.

    Article  Google Scholar 

  37. Jokar, E., Pourghassem, H., Kidney Segmentation in Ultrasound Images Using Curvelet Transform and Shape Prior. International Conference on Communication Systems and Network Technologies, 2013, pp. 180–185. https://doi.org/10.1109/CSNT.2013.47.

  38. Mendoza, C.S., et al. Automatic Analysis of Pediatric Renal Ultrasound Using Shape, Anatomical and Image Acquisition Priors. 2013. Berlin, Heidelberg: Springer Berlin Heidelberg.

    Book  Google Scholar 

  39. Mendoza, C.S., et al., Kidney segmentation in ultrasound via genetic initialization and Active Shape Models with rotation correction. IEEE 10th International Symposium on Biomedical Imaging, 2013. pp. 69–72. https://doi.org/10.1109/ISBI.2013.6556414

  40. Lauren C. Smail, K.D., Luis H. Braga, Suzanna Becker, and R.R. Sonnadara, Using Deep Learning Algorithms to Grade Hydronephrosis Severity: Toward a Clinical Adjunct. Frontiers in pediatrics, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dhindsa, K., Smail, L.C., McGrath, M., Braga, L.H., Becker, S., Sonnadara, R.R., Grading Prenatal Hydronephrosis from Ultrasound Imaging Using Deep Convolutional Neural Networks. 2018 15th Conference on Computer and Robot Vision (CRV), 2018. pp. 80–87. https://doi.org/10.1109/CRV.2018.00021

  42. Erdman, L., et al. Predicting Obstructive Hydronephrosis Based on Ultrasound Alone. 2020. Cham: Springer International Publishing.

    Book  Google Scholar 

  43. Holmes N, H.M., Baskin LS,, Fetal surgery for posterior urethral valves: long-term postnatal outcomes. Pediatrics, 2001. 108(1).

    Article  CAS  Google Scholar 

  44. Alconcher LF, T.M., Natural history of bilateral mild isolated antenatal hydronephrosis conservatively managed. Pediatr Nephrol, 2021. 27(7): p. 19-23.

    Google Scholar 

  45. Sinha, A., et al., Revised guidelines on management of antenatal hydronephrosis. Indian Pediatr, 2013. 50(2): p. 215-231.

    Article  Google Scholar 

  46. Lei, T., et al., Medical Image Segmentation Using Deep Learning: A Survey. 2020. arXiv:2009.13120.

  47. Milletari, F., Navab, N., Ahmadi, S.-A., V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. 2016 Fourth International Conference on 3D Vision (3DV). 2016. pp. 565–571. https://doi.org/10.1109/3DV.2016.79

  48. Kingma, D.P. and J. Ba, Adam: A Method for Stochastic Optimization. 2014, arXiv:1412.6980

  49. Bahareh Behboodi, H.R., Ultrasound segmentation using U-Net: learning from simulated data and testing on real data. 2019, arXiv:1904.11031.

  50. Chen, Y.-Q., et al., Three-dimensional ultrasound virtual organ computer-aided analysis technique in the assessment of function of diseased kidney in children with hydronephrosis. Chinese Journal of Medical Imaging Technology, 2013. 29(9): p. 1505-1508.

    Google Scholar 

  51. Otero, H.J., et al., Feasibility and Quality Determinants of 3D Sonography in Children With Hydronephrosis. Journal of diagnostic medical sonography, 2018. 34(1): p. 31-36.

    Article  Google Scholar 

  52. Scanlan, K.A., Sonographic artifacts and their origins. AJR Am J Roentgenol, 1991. 156(6): p. 1267-1272.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Khong, PL., Zou, Z. et al. Evaluation of pediatric hydronephrosis using deep learning quantification of fluid-to-kidney-area ratio by ultrasonography. Abdom Radiol 46, 5229–5239 (2021). https://doi.org/10.1007/s00261-021-03201-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-021-03201-w

Keywords

Navigation