Skip to main content

Advertisement

Log in

Quantitative abdominal magnetic resonance imaging in children—special considerations

  • Special Section : Quantitative Imaging
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

The use of quantitative MRI methods for assessment of the abdomen in children has become commonplace over the past decade. Increasingly employed methods include MR elastography, chemical shift encoded (CSE) MR imaging for determination of proton density fat fraction, diffusion-weighted imaging, and a variety of relaxometry techniques, such as T1 and T2* mapping. These techniques can be used in a variety of settings to distinguish normal from abnormal tissue as well as determine the severity of disease. The performance of quantitative MRI methods in the pediatric population presents unique challenges as compared to adult populations. These challenges relate to multiple factors, including patient size, pediatric physiology, inability to breath hold, and greater physical motion during the examination. The purpose of this review article is to review quantitative MRI methods that may be used in clinical practice to assess the pediatric abdomen and to discuss special considerations when performing these techniques in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Trout AT, Sheridan RM, Serai SD, Xanthakos SA, Su W, Zhang B, Wallihan DB. Diagnostic Performance of MR Elastography for Liver Fibrosis in Children and Young Adults with a Spectrum of Liver Diseases. Radiology 2018; 287(3):824–832.

  2. Armstrong T, Ly KV, Murthy S, Ghahremani S, Kim GHJ, Calkins KL, Wu HH. Free-breathing quantification of hepatic fat in healthy children and children with nonalcoholic fatty liver disease using a multi-echo 3-D stack-of-radial MRI technique. Pediatr Radiol 2018; 48(7):941–953.

  3. Dillman JR, Trout AT, Costello EN, Serai SD, Bramlage KS, Kohli R, Xanthakos SA. Quantitative Liver MRI-Biopsy Correlation in Pediatric and Young Adult Patients with Nonalcoholic Fatty Liver Disease: Can One Be Used to Predict the Other? AJR Am J Roentgenol 2018; 210(1):166–174.

  4. Caro-Domínguez P, Gupta AA, Chavhan GB. Can diffusion-weighted imaging distinguish between benign and malignant pediatric liver tumors? Pediatr Radiol 2018; 48(1):85–93.

  5. Abu Ata N, Dillman JR, Gandhi DB, Dudley JA, Trout AT, Miethke AG. Association between liver diffusion-weighted imaging apparent diffusion coefficient values and other measures of liver disease in pediatric autoimmune liver disease patients. Abdom Radiol 2021; 46(1):197–204.

  6. de Lange C, Thrane KJ, Thomassen KS, Geier O, Nguyen B, Tomterstad A, Ording Müller LS, Thaulow E, Almaas R, Døhlen G, Suther KR, Möller T. Hepatic magnetic resonance T1-mapping and extracellular volume fraction compared to shear-wave elastography in pediatric Fontan-associated liver disease. Pediatr Radiol 2021; 51(1):66–76.

  7. Wood JC, Enriquez C, Ghugre N, Tyzka JM, Carson S, Nelson MD, Coates TD. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005; 106(4):1460–5.

  8. Schwimmer JB, Behling C, Angeles JE, Paiz M, Durelle J, Africa J, Newton KP, Brunt EM, Lavine JE, Abrams SH, Masand P, Krishnamurthy R, Wong K, Ehman RL, Yin M, Glaser KJ, Dzyubak B, Wolfson T, Gamst AC, Hooker J, Haufe W, Schlein A, Hamilton G, Middleton MS, Sirlin CB. Magnetic resonance elastography measured shear stiffness as a biomarker of fibrosis in pediatric nonalcoholic fatty liver disease. Hepatology 2017; 66(5):1474–1485.

  9. Alsaied T, Possner M, Lubert AM, Trout AT, Szugye C, Palermo JJ, Lorts A, Goldstein BH, Veldtman GR, Anwar N, Dillman JR. Relation of Magnetic Resonance Elastography to Fontan Failure and Portal Hypertension. Am J Cardiol 2019; 124(9):1454–1459.

  10. Dillman JR, Serai SD, Trout AT, Singh R, Tkach JA, Taylor AE, Blaxall BC, Fei L, Miethke AG. Diagnostic performance of quantitative magnetic resonance imaging biomarkers for predicting portal hypertension in children and young adults with autoimmune liver disease. Pediatr Radiol 2019; 49(3):332–341.

  11. Trout AT, Anupindi SA, Gee MS, Khanna G, Xanthakos SA, Serai SD, Baikpour M, Calle-Toro JS, Ozturk A, Zhang B, Dillman JR. Normal Liver Stiffness Measured with MR Elastography in Children. Radiology 2020; 297(3):663–669.

  12. Morin CE, Dillman JR, Serai SD, Trout AT, Tkach JA, Wang H. Comparison of Standard Breath-Held, Free-Breathing, and Compressed Sensing 2D Gradient-Recalled Echo MR Elastography Techniques for Evaluating Liver Stiffness. AJR Am J Roentgenol 2018; 211(6): W279-W287.

  13. Wang H, Tkach JA, Trout AT, Dumoulin CL, Dillman JR. Respiratory-triggered spin-echo echo-planar imaging-based mr elastography for evaluating liver stiffness. J Magn Reson Imaging 2019; 50(2):391–396.

  14. Murphy IG, Graves MJ, Reid S, Patterson AJ, Patterson I, Priest AN, Lomas DJ. Comparison of breath-hold, respiratory navigated and free-breathing MR elastography of the liver. Magn Reson Imaging 2017; 37:46–50.

  15. Yin M, Talwalkar JA, Glaser KJ, Venkatesh SK, Chen J, Manduca A, Ehman RL. Dynamic postprandial hepatic stiffness augmentation assessed with MR elastography in patients with chronic liver disease. AJR Am J Roentgenol 2011; 197(1):64–70.

  16. Jajamovich GH, Dyvorne H, Donnerhack C, Taouli B. Quantitative liver MRI combining phase contrast imaging, elastography, and DWI: assessment of reproducibility and postprandial effect at 3.0 T. PLoS One 2014; 9(5):e97355.

  17. Serai SD, Abu-El-Haija M, Trout AT. 3D MR elastography of the pancreas in children. Abdom Radiol (NY) 2019; 44(5):1834–1840.

  18. Liu CY, McKenzie CA, Yu H, Brittain JH, Reeder SB. Fat quantification with IDEAL gradient echo imaging: correction of bias from T(1) and noise. Magn Reson Med 2007; 58(2):354–64.

  19. Mouzaki M, Trout AT, Arce-Clachar AC, Bramlage K, Kuhnell P, Dillman JR, Xanthakos S. Assessment of Nonalcoholic Fatty Liver Disease Progression in Children Using Magnetic Resonance Imaging. J Pediatr 2018; 201:86–92.

  20. Middleton MS, Van Natta ML, Heba ER, Alazraki A, Trout AT, Masand P, Brunt EM, Kleiner DE, Doo E, Tonascia J, Lavine JE, Shen W, Hamilton G, Schwimmer JB, Sirlin CB; NASH Clinical Research Network. Diagnostic accuracy of magnetic resonance imaging hepatic proton density fat fraction in pediatric nonalcoholic fatty liver disease. Hepatology 2018; 67(3):858–872.

  21. Lohöfer FK, Kaissis GA, Müller-Leisse C, Franz D, Katemann C, Hock A, Peeters JM, Rummeny EJ, Karampinos D, Braren RF. Acceleration of chemical shift encoding-based water fat MRI for liver proton density fat fraction and T2* mapping using compressed sensing. PLoS One 2019; 14(11):e0224988.

  22. Schneider M, Benkert T, Solomon E, Nickel D, Fenchel M, Kiefer B, Maier A, Chandarana H, Block KT. Free-breathing fat and R2 * quantification in the liver using a stack-of-stars multi-echo acquisition with respiratory-resolved model-based reconstruction. Magn Reson Med 2020; 84(5):2592–2605.

  23. Campo CA, Hernando D, Schubert T, Bookwalter CA, Pay AJV, Reeder SB. Standardized Approach for ROI-Based Measurements of Proton Density Fat Fraction and R2* in the Liver. AJR Am J Roentgenol 2017; 209(3):592–603.

  24. Giza SA, Koreman TL, Sethi S, Miller MR, Penava DA, Eastabrook GD, McKenzie CA, de Vrijer B. Water-fat magnetic resonance imaging of adipose tissue compartments in the normal third trimester fetus. Pediatr Radiol 2021; Epub ahead of print.

  25. Grasparil ADI, Gupta H, Sheybani E, Chavhan GB. Low b-value (50–100) diffusion-weighted images detect significantly more hyperintense liver lesions in children than T2-weighted images. Pediatr Radiol 2019; 49(10):1299–1305.

  26. Littooij AS, Nikkels PG, Hulsbergen-van de Kaa CA, van de Ven CP, van den Heuvel-Eibrink MM, Olsen ØE. Apparent diffusion coefficient as it relates to histopathology findings in post-chemotherapy nephroblastoma: a feasibility study. Pediatr Radiol 2017; 47(12):1608–1614.

  27. Stanescu-Siegmund N, Nimsch Y, Wunderlich AP, Wagner M, Meier R, Juchems MS, Beer M, Schmidt SA. Quantification of inflammatory activity in patients with Crohn's disease using diffusion weighted imaging (DWI) in MR enteroclysis and MR enterography. Acta Radiol 2017; 58(3):264–271.

  28. Ream JM, Dillman JR, Adler J, Khalatbari S, McHugh JB, Strouse PJ, Dhanani M, Shpeen B, Al-Hawary MM. MRI diffusion-weighted imaging (DWI) in pediatric small bowel Crohn disease: correlation with MRI findings of active bowel wall inflammation. Pediatr Radiol 2013; 43(9):1077–85.

  29. Tabari A, Machado-Rivas F, Kirsch JE, Nimkin K, Gee MS. Performance of simultaneous multi-slice accelerated diffusion-weighted imaging for assessing focal renal lesions in pediatric patients with tuberous sclerosis complex. Pediatr Radiol 2021; 51(1):77–85.

  30. Yoon JH, Nickel MD, Peeters JM, Lee JM. Rapid Imaging: Recent Advances in Abdominal MRI for Reducing Acquisition Time and Its Clinical Applications. Korean J Radiol 2019; 20(12):1597–1615.

  31. Peña-Nogales Ó, Hernando D, Aja-Fernández S, de Luis-Garcia R. Determination of optimized set of b-values for Apparent Diffusion Coefficient mapping in liver Diffusion-Weighted MRI. J Magn Reson 2020; Epub 2019 Oct 31.

  32. Wurnig MC, Germann M, Boss A. Is there evidence for more than two diffusion components in abdominal organs? - A magnetic resonance imaging study in healthy volunteers. NMR Biomed 2018; 31(1). Epub 2017 Nov 3.

  33. Janowski K, Shumbayawonda E, Dennis A, Kelly M, Bachtiar V, DeBrota D, Langford C, Thomaides-Brears H, Pronicki M, Grajkowska W, Wozniak M, Pawliszak P, Chełstowska S, Jurkiewicz E, Banerjee R, Socha P. Multiparametric MRI as a Noninvasive Monitoring Tool for Children With Autoimmune Hepatitis. J Pediatr Gastroenterol Nutr 2021; 72(1):108–114.

  34. Kazour I, Serai SD, Xanthakos SA, Fleck RJ. Using T1 mapping in cardiovascular magnetic resonance to assess congestive hepatopathy. Abdom Radiol (NY). 2018; 43(10):2679–2685.

  35. Dillman JR, Tkach JA, Gandhi D, Singh R, Miethke AG, Jayaswal A, Trout AT. Relationship between magnetic resonance imaging spleen T1 relaxation and other radiologic and clinical biomarkers of liver fibrosis in children and young adults with autoimmune liver disease. Abdom Radiol (NY) 2020; 45(11):3709–3715.

  36. Wang M, Gao F, Wang X, Liu Y, Ji R, Cang L, Shi Y. Magnetic resonance elastography and T1 mapping for early diagnosis and classification of chronic pancreatitis. J Magn Reson Imaging 2018; Epub ahead of print.

  37. Ashihara N, Watanabe T, Kako S, Kuraishi Y, Ozawa M, Shigefuji S, Kanai K, Usami Y, Yamada A, Umemura T, Fujinaga Y. Correlation of Pancreatic T1 Values Using Modified Look-Locker Inversion Recovery Sequence (MOLLI) with Pancreatic Exocrine and Endocrine Function. J Clin Med. 2020 Jun 10;9(6):1805.

  38. Dillman JR, Benoit SW, Gandhi DB, Trout AT, Tkach JA, VandenHeuvel K, Devarajan P. Multiparametric Renal MRI in Children and Young Adults: Comparison between Healthy Individuals and Patients with Chronic Kidney Disease. Under Review.

  39. Dillman JR, Serai SD, Miethke AG, Singh R, Tkach JA, Trout AT. Comparison of liver T1 relaxation times without and with iron correction in pediatric autoimmune liver disease. Pediatr Radiol 2020; 50(7):935–942.

  40. Piechnik SK, Jerosch-Herold M. Myocardial T1 mapping and extracellular volume quantification: an overview of technical and biological confounders. Int J Cardiovasc Imaging 2018; 34(1):3–14.

  41. Amano Y, Omori Y, Yanagisawa F, Ando C, Shinoda N, Suzuki Y, Yamamoto H, Matsumoto N. Relationship between Measurement Errors in Myocardial T1 Mapping and Heart Rate. Magn Reson Med Sci 2020; 19(4):345–350.

  42. Cho YJ, Kim WS, Choi YH, Lee SB, Lee S, Cheon JE, Paek M, Woo S. Validation and feasibility of liver T1 mapping using free breathing MOLLI sequence in children and young adults. Sci Rep 2020; 10(1):18390.

  43. Chen Y, Lee GR, Aandal G, Badve C, Wright KL, Griswold MA, Seiberlich N, Gulani V. Rapid volumetric T1 mapping of the abdomen using three-dimensional through-time spiral GRAPPA. Magn Reson Med 2016; 75(4):1457–65.

  44. Gilligan LA, Dillman JR, Tkach JA, Xanthakos SA, Gill JK, Trout AT. Magnetic resonance imaging T1 relaxation times for the liver, pancreas, and spleen in healthy children at 1.5 and 3 tesla. Pediatr Radiol 2019; 49(8):1018–1024.

  45. de Assis RA, Ribeiro AA, Kay FU, Rosemberg LA, Nomura CH, Loggetto SR, Araujo AS, Fabron Junior A, de Almeida Veríssimo MP, Baldanzi GR, Espósito BP, Baroni RH, Wood JC, Hamerschlak N. Pancreatic iron stores assessed by magnetic resonance imaging (MRI) in beta thalassemic patients. Eur J Radiol 2012; 81(7):1465–70.

  46. Chavhan GB, Kamath BM, Siddiqui I, Tomlinson C. Magnetic resonance imaging of neonatal hemochromatosis. Pediatr Radiol 2021; Epub ahead of print.

  47. Doyle EK, Toy K, Valdez B, Chia JM, Coates T, Wood JC. Ultra-short echo time images quantify high liver iron. Magn Reson Med 2018; 79(3):1579–1585.

  48. Garbowski MW, Carpenter JP, Smith G, Roughton M, Alam MH, He T, Pennell DJ, Porter JB. Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan. J Cardiovasc Magn Reson 2014; 16(1):40.

  49. Yang W, Kim JE, Choi HC, Park MJ, Choi HY, Shin HS, Won JH, Han F, Nickel MD, Cho HC. T2 mapping in gadoxetic acid-enhanced MRI: utility for predicting decompensation and death in cirrhosis. Eur Radiol 2021; Epub ahead of print.

  50. Wolf M, de Boer A, Sharma K, Boor P, Leiner T, Sunder-Plassmann G, Moser E, Caroli A, Jerome NP. Magnetic resonance imaging T1- and T2-mapping to assess renal structure and function: a systematic review and statement paper. Nephrol Dial Transplant 2018; 33(suppl_2):ii41-ii50.

  51. Spieker M, Katsianos E, Gastl M, Behm P, Horn P, Jacoby C, Schnackenburg B, Reinecke P, Kelm M, Westenfeld R, Bönner F. T2 mapping cardiovascular magnetic resonance identifies the presence of myocardial inflammation in patients with dilated cardiomyopathy as compared to endomyocardial biopsy. Eur Heart J Cardiovasc Imaging 2018; 19(5):574–582.

  52. Boyarko AC, Dillman JR, Tkach JA, Pednekar AS, Trout AT. Comparison of compressed SENSE and SENSE for quantitative liver MRI in children and young adults. Abdom Radiol (NY) 2021; ePub ahead of print.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. Dillman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dillman, J.R., Tkach, J.A., Pedneker, A. et al. Quantitative abdominal magnetic resonance imaging in children—special considerations. Abdom Radiol 47, 3069–3077 (2022). https://doi.org/10.1007/s00261-021-03191-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-021-03191-9

Keywords

Navigation