Skip to main content

Advertisement

Log in

Imaging considerations for thermal and radiotherapy ablation of primary and metastatic renal cell carcinoma

  • Review
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Ablative (percutaneous and stereotactic) thermal and radiotherapy procedures for management of both primary and metastatic renal cell carcinoma are increasing in popularity in clinical practice. Data suggest comparable efficacy with lower cost and morbidity compared to nephrectomy. Ablative therapies may be used alone or in conjunction with surgery or chemotherapy for treatment of primary tumor and metastatic disease. Imaging plays a crucial role in pre-treatment selection and planning of ablation, intra-procedural guidance, evaluation for complications, short- and long-term post-procedural surveillance of disease, and treatment response. Treatment response and disease recurrence may differ considerably after ablation, particularly for stereotactic radiotherapy, when compared to conventional surgical and chemotherapies. This article reviews the current and emerging role of imaging for ablative therapy of renal cell carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hock, L.M., J. Lynch, and K.C. Balaji, Increasing incidence of all stages of kidney cancer in the last 2 decades in the United States: an analysis of surveillance, epidemiology and end results program data. J Urol, 2002. 167(1): p. 57-60.

    Article  PubMed  Google Scholar 

  2. Lightfoot, N., et al., Impact of noninvasive imaging on increased incidental detection of renal cell carcinoma. Eur Urol, 2000. 37(5): p. 521-7.

    Article  CAS  PubMed  Google Scholar 

  3. May, A.M., et al., Current Trends in Partial Nephrectomy After Guideline Release: Health Disparity for Small Renal Mass. Kidney Cancer, 2019. 3: p. 183-188.

    Article  Google Scholar 

  4. Wong, M.C.S., et al., Incidence and mortality of kidney cancer: temporal patterns and global trends in 39 countries. Scientific Reports, 2017. 7(1): p. 15698.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Bianchi, M., et al., A population-based competing-risks analysis of survival after nephrectomy for renal cell carcinoma. Urol Oncol, 2014. 32(1): p. 46.e1-7.

    Article  Google Scholar 

  6. Silverman, S.G., G.M. Israel, and Q.D. Trinh, Incompletely characterized incidental renal masses: emerging data support conservative management. Radiology, 2015. 275(1): p. 28-42.

    Article  PubMed  Google Scholar 

  7. Lowrance, W.T., et al., Complications after radical and partial nephrectomy as a function of age. The Journal of urology, 2010. 183(5): p. 1725-1730.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Patel, H.D., et al., Renal Functional Outcomes after Surgery, Ablation, and Active Surveillance of Localized Renal Tumors: A Systematic Review and Meta-Analysis. Clin J Am Soc Nephrol, 2017. 12(7): p. 1057-1069.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Go, A.S., et al., Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med, 2004. 351(13): p. 1296-305.

    Article  CAS  PubMed  Google Scholar 

  10. Tan, H.J., et al., Long-term survival following partial vs radical nephrectomy among older patients with early-stage kidney cancer. Jama, 2012. 307(15): p. 1629-35.

    Article  CAS  PubMed  Google Scholar 

  11. Ray, S., J.G. Cheaib, and P.M. Pierorazio, Active Surveillance for Small Renal Masses. Rev Urol, 2020. 22(1): p. 9-16.

    PubMed  PubMed Central  Google Scholar 

  12. Sebastia, C., et al., Active surveillance of small renal masses. Insights Imaging, 2020. 11(1): p. 63.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Volpe, A., The role of active surveillance of small renal masses. Int J Surg, 2016. 36(Pt C): p. 518-524.

    Article  PubMed  Google Scholar 

  14. Neves, J.B., et al., Protocol for a feasibility study of a cohort embedded randomised controlled trial comparing NEphron Sparing Treatment (NEST) for small renal masses. BMJ Open, 2019. 9(6): p. e030965.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rivero, J.R., et al., Partial Nephrectomy versus Thermal Ablation for Clinical Stage T1 Renal Masses: Systematic Review and Meta-Analysis of More than 3,900 Patients. J Vasc Interv Radiol, 2018. 29(1): p. 18-29.

    Article  PubMed  Google Scholar 

  16. Patel, H.D., et al., Comorbidities and causes of death in the management of localized T1a kidney cancer. Int J Urol, 2014. 21(11): p. 1086-92.

    Article  PubMed  Google Scholar 

  17. Ruhle, A., et al., Is there a role for stereotactic radiotherapy in the treatment of renal cell carcinoma? Clin Transl Radiat Oncol, 2019. 18: p. 104-112.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bardin, F., et al., Selective arterial embolization of symptomatic and asymptomatic renal angiomyolipomas: A retrospective study of safety, outcomes and tumor size reduction. Quantitative Imaging in Medicine and Surgery, 2017. 7: p. 8-23.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Reinhart, H., M. Ghaleb, and B. Davis, Transarterial embolization of renal tumors improves surgical outcomes: A case series. International journal of surgery case reports, 2015. 15: p. 116-118.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li, D., B. Pua, and D. Madoff, Role of Embolization in the Treatment of Renal Masses. Semin Intervent Radiol, 2014. 31: p. 70-81.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gunn, A., et al., Trans-Arterial Embolization of Renal Cell Carcinoma prior to Percutaneous Ablation: Technical Aspects, Institutional Experience, and Brief Review of the Literature. Current Urology, 2018. 12: p. 43-49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vikram, R., et al., ACR Appropriateness Criteria Renal Cell Carcinoma Staging. Journal of the American College of Radiology, 2016. 13.

  23. Heilbrun, M., et al., ACR Appropriateness Criteria Indeterminate Renal Mass. J Am Coll Radiol, 2015. 12: p. 333-341.

    Article  PubMed  Google Scholar 

  24. Hallscheidt, P., et al., Diagnostic Accuracy of Staging Renal Cell Carcinomas Using Multidetector-Row Computed Tomography and Magnetic Resonance Imaging. Journal of computer assisted tomography, 2004. 28: p. 333-9.

    Article  PubMed  Google Scholar 

  25. Silverman, S.G., et al., Bosniak Classification of Cystic Renal Masses, Version 2019: An Update Proposal and Needs Assessment. Radiology, 2019: p. 182646.

    Google Scholar 

  26. Remzi, M., et al., Are small renal tumors harmless? Analysis of histopathological features according to tumors 4 cm or less in diameter. J Urol, 2006. 176(3): p. 896-9.

    Article  PubMed  Google Scholar 

  27. Pahernik, S., et al., Small renal tumors: correlation of clinical and pathological features with tumor size. J Urol, 2007. 178(2): p. 414–7; discussion 416–7.

  28. Schieda, N., et al., Characterization of small (<4cm) solid renal masses by computed tomography and magnetic resonance imaging: Current evidence and further development. Diagnostic and interventional imaging, 2018. 99(7-8): p. 443-455.

    Article  CAS  PubMed  Google Scholar 

  29. Lim, R.S., et al., Renal angiomyolipoma without visible fat: Can we make the diagnosis using CT and MRI? Eur Radiol, 2018. 28(2): p. 542-553.

    Article  PubMed  Google Scholar 

  30. Lum, M., et al., Imaging of Small Renal Masses before and after Thermal Ablation. Radiographics, 2019. 39: p. 190083.

    Article  Google Scholar 

  31. Schmit, G., et al., ABLATE: A renal ablation planning algorithm. AJR Am J Roentgenol, 2014. 202: p. 894-903.

    Article  PubMed  Google Scholar 

  32. McClure, T., et al., Intermediate Outcomes and Predictors of Efficacy in the Radiofrequency Ablation of 100 Pathologically Proven Renal Cell Carcinomas. J Vasc Interv Radiol, 2014. 25.

  33. Camacho, J., et al., R.E.N.A.L. Nephrometry Score Predicts Early Tumor Recurrence and Complications after Percutaneous Ablative Therapies for Renal Cell Carcinoma: A 5-Year Experience. J Vasc Interv Radiol, 2015. 26.

  34. Schmit, G., et al., Usefulness of R.E.N.A.L. Nephrometry Scoring System for Predicting Outcomes and Complications of Percutaneous Ablation of 751 Renal Tumors. The Journal of urology, 2012. 189.

  35. Maxwell, A., et al., Renal Cell Carcinoma: Comparison of RENAL Nephrometry and PADUA Scores with Maximum Tumor Diameter for Prediction of Local Recurrence after Thermal Ablation. Radiology, 2016. 283: p. 161225.

    Google Scholar 

  36. Abboud, S., et al., Long-Term Clinical Outcomes Following Radiofrequency and Microwave Ablation of Renal Cell Carcinoma at a Single VA Medical Center. Current Problems in Diagnostic Radiology, 2017. 47.

  37. Gahan, J., et al., The Performance of a Modified RENAL Nephrometry Score in Predicting Renal Mass Radiofrequency Ablation Success. Urology, 2014. 85.

  38. Gupta, A., et al., General Anesthesia and Contrast-Enhanced Computed Tomography to Optimize Renal Percutaneous Radiofrequency Ablation: Multi-Institutional Intermediate-Term Results. Journal of endourology / Endourological Society, 2009. 23: p. 1099-105.

    Article  Google Scholar 

  39. Atwell, T.D., et al., Complications following 573 percutaneous renal radiofrequency and cryoablation procedures. J Vasc Interv Radiol, 2012. 23(1): p. 48-54.

    Article  PubMed  Google Scholar 

  40. Yamanaka, T., et al., CT-Guided Percutaneous Cryoablation in Renal Cell Carcinoma: Factors Affecting Local Tumor Control. J Vasc Interv Radiol, 2015. 26.

  41. Gervais, D.A., et al., Radiofrequency ablation of renal cell carcinoma: part 1, Indications, results, and role in patient management over a 6-year period and ablation of 100 tumors. AJR Am J Roentgenol, 2005. 185(1): p. 64-71.

    Article  PubMed  Google Scholar 

  42. Chen, S.H., et al., Ureteropelvic junction obliteration resulting in nephrectomy after radiofrequency ablation of small renal cell carcinoma. Urology, 2007. 69(5): p. 982 e3-5.

    Article  PubMed  Google Scholar 

  43. Johnson, D.B., et al., Nephrectomy after radiofrequency ablation-induced ureteropelvic junction obstruction: potential complication and long-term assessment of ablation adequacy. Urology, 2003. 62(2): p. 351-2.

    Article  PubMed  Google Scholar 

  44. Marion, J., et al., Safety and Efficacy of Retrograde Pyeloperfusion for Ureteral Protection during Renal Tumor Cryoablation. Journal of Vascular and Interventional Radiology, 2020. 31.

  45. Psutka, S.P., et al., Long-term oncologic outcomes after radiofrequency ablation for T1 renal cell carcinoma. Eur Urol, 2013. 63(3): p. 486-92.

    Article  PubMed  Google Scholar 

  46. Atwell, T.D., et al., Percutaneous cryoablation of stage T1b renal cell carcinoma: technique considerations, safety, and local tumor control. J Vasc Interv Radiol, 2015. 26(6): p. 792-9.

    Article  PubMed  Google Scholar 

  47. Schmit, G.D., et al., Percutaneous cryoablation of renal masses >or=3 cm: efficacy and safety in treatment of 108 patients. J Endourol, 2010. 24(8): p. 1255-62.

    Article  PubMed  Google Scholar 

  48. Atwell, T.D., et al., Percutaneous ablation of renal masses measuring 3.0 cm and smaller: comparative local control and complications after radiofrequency ablation and cryoablation. AJR Am J Roentgenol, 2013. 200(2): p. 461-6.

    Article  PubMed  Google Scholar 

  49. Rosenberg, M., et al., Percutaneous Cryoablation of Renal Lesions With Radiographic Ice Ball Involvement of the Renal Sinus: Analysis of Hemorrhagic and Collecting System Complications. AJR Am J Roentgenol, 2011. 196: p. 935-9.

    Article  PubMed  Google Scholar 

  50. Janzen, N., et al., "The effects of intentional cryoablation and radio frequency ablation of renal tissue involving the collecting system in a porcine model". The Journal of urology, 2005. 173: p. 1368-74.

    Article  PubMed  Google Scholar 

  51. Schmit, G., et al., Percutaneous Cryoablation of Anterior Renal Masses: Technique, Efficacy, and Safety. AJR Am J Roentgenol, 2010. 195: p. 1418-22.

    Article  PubMed  Google Scholar 

  52. Boss, A., et al., Thermal Damage of the Genitofemoral Nerve Due to Radiofrequency Ablation of Renal Cell Carcinoma: A Potentially Avoidable Complication. AJR Am J Roentgenol, 2006. 185: p. 1627-31.

    Article  Google Scholar 

  53. Francolini, G., et al., Stereotactic body radiation therapy (SBRT) on renal cell carcinoma, an overview of technical aspects, biological rationale and current literature. Crit Rev Oncol Hematol, 2018. 131: p. 24-29.

    Article  CAS  PubMed  Google Scholar 

  54. Siva, S., et al., Stereotactic Ablative Radiotherapy for ≥T1b Primary Renal Cell Carcinoma: A Report From the International Radiosurgery Oncology Consortium for Kidney (IROCK). International Journal of Radiation Oncology*Biology*Physics, 2020. 108.

  55. Kothari, G., et al., Stereotactic body radiotherapy for primary renal cell carcinoma and adrenal metastases. Chinese Clinical Oncology, 2017. 6: p. 630-630.

    Article  Google Scholar 

  56. Grant, S., et al., Stereotactic Body Radiotherapy for the Definitive Treatment of Early Stage Kidney Cancer: A Survival Comparison with Surgery, Tumor Ablation, and Observation. Advances in Radiation Oncology, 2020. 5.

  57. Correa, R.J.M., et al., The Emerging Role of Stereotactic Ablative Radiotherapy for Primary Renal Cell Carcinoma: A Systematic Review and Meta-Analysis. Eur Urol Focus, 2019. 5(6): p. 958-969.

    Article  PubMed  Google Scholar 

  58. Kothari, G., et al., Outcomes of stereotactic radiotherapy for cranial and extracranial metastatic renal cell carcinoma: a systematic review. Acta Oncol, 2015. 54(2): p. 148-57.

    Article  CAS  PubMed  Google Scholar 

  59. Wang, H.Y., et al., Meta-analysis of the diagnostic performance of [18F]FDG-PET and PET/CT in renal cell carcinoma. Cancer Imaging, 2012. 12: p. 464-74.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pham, D., et al., A Review of Kidney Motion Under Free, Deep and Forced-shallow Breathing Conditions: Implications for Stereotactic Ablative Body Radiotherapy Treatment. Technology in cancer research & treatment, 2013. 13.

  61. Ford, E.C., et al., Respiration-correlated spiral CT: a method of measuring respiratory-induced anatomic motion for radiation treatment planning. Med Phys, 2003. 30(1): p. 88-97.

    Article  CAS  PubMed  Google Scholar 

  62. Rühle, A., et al., Is there a role for stereotactic radiotherapy in the treatment of renal cell carcinoma? Clinical and Translational Radiation Oncology, 2019. 18.

  63. Marconi, L., et al., Systematic Review and Meta-analysis of Diagnostic Accuracy of Percutaneous Renal Tumour Biopsy. Eur Urol, 2016. 69(4): p. 660-673.

    Article  PubMed  Google Scholar 

  64. Richard, P.O., et al., Renal Tumor Biopsy for Small Renal Masses: A Single-center 13-year Experience. Eur Urol, 2015. 68(6): p. 1007-13.

    Article  PubMed  Google Scholar 

  65. Rahbar, H., et al., Evaluation of renal mass biopsy risk stratification algorithm for robotic partial nephrectomy--could a biopsy have guided management? J Urol, 2014. 192(5): p. 1337-42.

    Article  PubMed  Google Scholar 

  66. Tuncali, K., et al., Evaluation of patients referred for percutaneous ablation of renal tumors: importance of a preprocedural diagnosis. AJR Am J Roentgenol, 2004. 183(3): p. 575-82.

    Article  PubMed  Google Scholar 

  67. Tsang Mui Chung, M.S., et al., Should Renal Mass Biopsy Be Performed prior to or Concomitantly with Thermal Ablation? J Vasc Interv Radiol, 2018. 29(9): p. 1240-1244.

    Article  Google Scholar 

  68. Wells, S.A., et al., Renal mass biopsy and thermal ablation: should biopsy be performed before or during the ablation procedure? Abdom Radiol (NY), 2017. 42(6): p. 1773-1780.

    Article  Google Scholar 

  69. Widdershoven, C.V., et al., Renal biopsies performed before versus during ablation of T1 renal tumors: implications for prevention of overtreatment and follow-up. Abdominal Radiology, 2021. 46(1): p. 373-379.

    Article  PubMed  Google Scholar 

  70. Finelli, A., et al., Management of Small Renal Masses: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol, 2017. 35: p. JCO2016699645.

    Article  Google Scholar 

  71. Solomon, S. and S. Silverman, Imaging in Interventional Oncology. Radiology, 2010. 257: p. 624-40.

    Article  PubMed  Google Scholar 

  72. Amalou, H. and B. Wood, Multimodality Fusion with MRI, CT, and Ultrasound Contrast for Ablation of Renal Cell Carcinoma. Case reports in urology, 2012. 2012: p. 390912.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Maybody, M., An Overview of Image-Guided Percutaneous Ablation of Renal Tumors. Semin Intervent Radiol, 2010. 27: p. 261-7.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhong, J. and T.M. Wah, Renal ablation: current management strategies and controversies. Chinese Clinical Oncology; Vol 8, No 6 (December 2019): Chinese Clinical Oncology (Interventional Oncology), 2019.

  75. O'Neal, D., et al., Contrast-Enhanced Ultrasound-Guided Radiofrequency Ablation of Renal Tumors. Journal of kidney cancer and VHL, 2018. 5: p. 7.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Venkatesan, A.M., B.J. Wood, and D.A. Gervais, Percutaneous ablation in the kidney. Radiology, 2011. 261(2): p. 375-91.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Curci, N.E., et al., Effect of iodinated contrast material on post-operative eGFR when administered during renal mass ablation. Eur Radiol, 2021.

  78. Zhu, M., Z. Sun, and C. Ng, Image-guided thermal ablation with MR-based thermometry. Quantitative Imaging in Medicine and Surgery, 2017. 7.

  79. Iannuccilli, J., et al., Percutaneous Ablation for Small Renal Masses—Imaging Follow-Up. Semin Intervent Radiol, 2014. 31: p. 50-63.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wile, G., et al., CT and MR Imaging after Imaging-guided Thermal Ablation of Renal Neoplasms1. Radiographics, 2007. 27: p. 325–39; discussion 339.

  81. Kawamoto, S., et al., Sequential Changes after Radiofrequency Ablation and Cryoablation of Renal Neoplasms: Role of CT and MR Imaging1. Radiographics, 2007. 27: p. 343-55.

    Article  PubMed  Google Scholar 

  82. Levinson, A., et al., Long-Term Oncological and Overall Outcomes of Percutaneous Radio Frequency Ablation in High Risk Surgical Patients With a Solitary Small Renal Mass. The Journal of urology, 2008. 180: p. 499–504; discussion 504.

  83. Johnson, D., et al., Defining the complications of cryoablation and radio frequency ablation of small renal tumors: A multi-institutional review. The Journal of urology, 2004. 172: p. 874-7.

    Article  PubMed  Google Scholar 

  84. Allen, B. and E. Remer, Percutaneous Cryoablation of Renal Tumors: Patient Selection, Technique, and Postprocedural Imaging 1. Radiographics, 2010. 30: p. 887-900.

    Article  PubMed  Google Scholar 

  85. Stein, A., et al., Persistent Contrast Enhancement Several Months after Laparoscopic Cryoablation of the Small Renal Mass May Not Indicate Recurrent Tumor. Journal of endourology / Endourological Society, 2008. 22: p. 2433-9.

    Article  Google Scholar 

  86. Beemster, P., et al., Follow-Up of Renal Masses After Cryosurgery Using Computed Tomography; Enhancement Patterns and Cryolesion Size. BJU Int, 2008. 101: p. 1237-42.

    Article  PubMed  Google Scholar 

  87. 87.Gill, I., et al., Renal cryoablation: Outcome at 3 years. The Journal of urology, 2005. 173: p. 1903-7.

    Article  PubMed  Google Scholar 

  88. Goldberg, S., et al., Image-guided Tumor Ablation: Standardization of Terminology and Reporting Criteria1. J Vasc Interv Radiol, 2005. 16: p. 765-78.

    Article  PubMed  Google Scholar 

  89. Gervais, D., et al., Renal cell carcinoma: clinical experience and technical success with radio-frequency ablation of 42 tumors. Radiology, 2003. 226 2: p. 417-24.

    Article  PubMed  Google Scholar 

  90. Zagoria, R., et al., Oncologic Efficacy of CT-Guided Percutaneous Radiofrequency Ablation of Renal Cell Carcinomas. AJR Am J Roentgenol, 2007. 189: p. 429-36.

    Article  PubMed  Google Scholar 

  91. Kurup, A., Percutaneous Ablation for Small Renal Masses—Complications. Semin Intervent Radiol, 2014. 31: p. 42-49.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Schmit, G., et al., Ice Ball Fractures during Percutaneous Renal Cryoablation: Risk Factors and Potential Implications. J Vasc Interv Radiol, 2010. 21: p. 1309-12.

    Article  PubMed  Google Scholar 

  93. Gervais, D., et al., Radiofrequency Ablation of Renal Cell Carcinoma: Part 2, Lessons Learned with Ablation of 100 Tumors. AJR Am J Roentgenol, 2005. 185: p. 72-80.

    Article  PubMed  Google Scholar 

  94. Uppot, R., et al., Imaging-Guided Percutaneous Ablation of Renal Cell Carcinoma: A Primer of How We Do It. AJR Am J Roentgenol, 2009. 192: p. 1558-70.

    Article  PubMed  Google Scholar 

  95. El Dib, R., N.J. Touma, and A. Kapoor, Cryoablation vs radiofrequency ablation for the treatment of renal cell carcinoma: a meta-analysis of case series studies. BJU Int, 2012. 110(4): p. 510-6.

    Article  PubMed  Google Scholar 

  96. Kurup, A., et al., Neuroanatomic Considerations in Percutaneous Tumor Ablation. Radiographics, 2013. 33: p. 1195-1215.

    Article  PubMed  Google Scholar 

  97. Park, B. and C.K. Kim, Complications of image-guided radiofrequency ablation of renal cell carcinoma: Causes, imaging features and prevention methods. Eur Radiol, 2009. 19: p. 2180-90.

    Article  PubMed  Google Scholar 

  98. Hui, G., et al., Comparison of Percutaneous and Surgical Approaches to Renal Tumor Ablation: Metaanalysis of Effectiveness and Complication Rates. J Vasc Interv Radiol, 2008. 19: p. 1311-20.

    Article  PubMed  Google Scholar 

  99. Ginat, D. and W. Saad, Bowel Displacement and Protection Techniques During Percutaneous Renal Tumor Thermal Ablation. Tech Vasc Interv Radiol, 2010. 13: p. 66-74.

    Article  PubMed  Google Scholar 

  100. Maas, M., et al., Follow-up after radiological intervention in oncology: ECIO-ESOI evidence and consensus-based recommendations for clinical practice. Insights into imaging, 2020. 11.

  101. Kielar, A., R. Hibbert, and K. Maturen, Imaging after Local Tumor Therapies: Kidney and Liver. Seminars in roentgenology, 2013. 48: p. 273-284.

    Article  PubMed  Google Scholar 

  102. Matsumoto, E., et al., The radiographic evolution of radio frequency ablated renal tumors. The Journal of urology, 2004. 172: p. 45-8.

    Article  PubMed  Google Scholar 

  103. Schirmang, T., et al., Kidney Neoplasms: Renal Halo Sign after Percutaneous Radiofrequency Ablation—Incidence and Clinical Importance in 101 Consecutive Patients 1. Radiology, 2009. 253: p. 263-9.

    Article  PubMed  Google Scholar 

  104. Kawamoto, S., et al., Computed Tomography and Magnetic Resonance Imaging Appearance of Renal Neoplasms After Radiofrequency Ablation and Cryoablation. Seminars in ultrasound, CT, and MR, 2009. 30: p. 67-77.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Remer, E., et al., MR Imaging of the Kidneys After Laparoscopic Cryoablation. AJR Am J Roentgenol, 2000. 174: p. 635-40.

    Article  CAS  PubMed  Google Scholar 

  106. Gill, I.S., et al., Renal cryoablation: outcome at 3 years. J Urol, 2005. 173(6): p. 1903-7.

    Article  PubMed  Google Scholar 

  107. Park, S.Y., C.K. Kim, and B. Park, Dual-energy CT in assessing therapeutic response to radiofrequency ablation of renal cell carcinomas. European journal of radiology, 2013. 83.

  108. Gervais, D., et al., Radio-frequency Ablation of Renal Cell Carcinoma: Early Clinical Experience1. Radiology, 2000. 217: p. 665-72.

    Article  CAS  PubMed  Google Scholar 

  109. Zagoria, R., et al., Percutaneous CT-Guided Radiofrequency Ablation of Renal Neoplasms: Factors Influencing Success. AJR Am J Roentgenol, 2004. 183: p. 201-7.

    Article  PubMed  Google Scholar 

  110. Varkarakis, I., et al., Percutaneous radio frequency ablation of renal masses: Results at a 2-year mean followup. The Journal of urology, 2005. 174: p. 456–60; discussion 460.

  111. Hussein, D., et al., Percutaneous Cryoablation of Renal Tumors: Is It Time for a New Paradigm Shift? Journal of Vascular and Interventional Radiology, 2017. 28.

  112. Matin, S., et al., Residual and Recurrent Disease Following Renal Energy Ablative Therapy: A Multi-Institutional Study. The Journal of urology, 2006. 176: p. 1973-7.

    Article  PubMed  Google Scholar 

  113. Eiken, P.W., et al., Imaging following renal ablation: what can we learn from recurrent tumors? Abdom Radiol (NY), 2018. 43(10): p. 2750-2755.

    Article  Google Scholar 

  114. Takaki, H., et al., False-Positive Tumor Enhancement After Cryoablation of Renal Cell Carcinoma: A Prospective Study. AJR Am J Roentgenol, 2016. 206(2): p. 332-9.

    Article  PubMed  Google Scholar 

  115. Lokken, R.P., et al., Inflammatory nodules mimic applicator track seeding after percutaneous ablation of renal tumors. AJR Am J Roentgenol, 2007. 189(4): p. 845-8.

    Article  PubMed  Google Scholar 

  116. Iguchi, T., et al., Simultaneous biopsy and radiofrequency ablation of T1a renal cell carcinoma. Diagn Interv Imaging, 2016. 97(11): p. 1159-1164.

    Article  CAS  PubMed  Google Scholar 

  117. Andersen, M.F. and T.P. Norus, Tumor Seeding With Renal Cell Carcinoma After Renal Biopsy. Urol Case Rep, 2016. 9: p. 43-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sun, M.R., et al., Effect of Stereotactic Body Radiotherapy on the Growth Kinetics and Enhancement Pattern of Primary Renal Tumors. AJR Am J Roentgenol, 2016. 206(3): p. 544-53.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Siva, S., et al., A systematic review of stereotactic radiotherapy ablation for primary renal cell carcinoma. BJU Int, 2012. 110(11 Pt B): p. E737–43.

  120. Funayama, S., et al., Renal Cancer is Not Radioresistant: Slowly but Continuing Shrinkage of the Tumor After Stereotactic Body Radiation Therapy. Technol Cancer Res Treat, 2019. 18: p. 1533033818822329.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Nair, V.J., et al., CyberKnife for inoperable renal tumors: Canadian pioneering experience. Can J Urol, 2013. 20(5): p. 6944-9.

    PubMed  Google Scholar 

  122. Ponsky, L., et al., Phase I dose-escalation study of stereotactic body radiotherapy (SBRT) for poor surgical candidates with localized renal cell carcinoma. Radiother Oncol, 2015. 117(1): p. 183-7.

    Article  PubMed  Google Scholar 

  123. Chang, J.H., et al., Stereotactic Ablative Body Radiotherapy for Primary Renal Cell Carcinoma in Non-surgical Candidates: Initial Clinical Experience. Clin Oncol (R Coll Radiol), 2016. 28(9): p. e109-14.

    Article  CAS  Google Scholar 

  124. Kaidar-Person, O., et al., Stereotactic Body Radiotherapy for Large Primary Renal Cell Carcinoma. Clin Genitourin Cancer, 2017. 15(5): p. e851-e854.

    Article  PubMed  Google Scholar 

  125. Reynolds, H.M., et al., Diffusion weighted and dynamic contrast enhanced MRI as an imaging biomarker for stereotactic ablative body radiotherapy (SABR) of primary renal cell carcinoma. PLoS One, 2018. 13(8): p. e0202387.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Yamamoto, T., et al., Renal atrophy after stereotactic body radiotherapy for renal cell carcinoma. Radiat Oncol, 2016. 11: p. 72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Capitanio, U., et al., Epidemiology of Renal Cell Carcinoma. Eur Urol, 2019. 75(1): p. 74-84.

    Article  PubMed  Google Scholar 

  128. Choueiri, T.K. and R.J. Motzer, Systemic Therapy for Metastatic Renal-Cell Carcinoma. N Engl J Med, 2017. 376(4): p. 354-366.

    Article  CAS  PubMed  Google Scholar 

  129. Zhang, Y., et al., Stereotactic Ablative Radiation Therapy (SAbR) Used to Defer Systemic Therapy in Oligometastatic Renal Cell Cancer. Int J Radiat Oncol Biol Phys, 2019. 105(2): p. 367-375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hellman, S. and R.R. Weichselbaum, Oligometastases. J Clin Oncol, 1995. 13(1): p. 8-10.

    Article  CAS  PubMed  Google Scholar 

  131. Dabestani, S., et al., Local treatments for metastases of renal cell carcinoma: a systematic review. Lancet Oncol, 2014. 15(12): p. e549-61.

    Article  PubMed  Google Scholar 

  132. Motzer, R.J., et al., NCCN Guidelines Insights: Kidney Cancer, Version 2.2020. J Natl Compr Canc Netw, 2019. 17(11): p. 1278-1285.

    Article  CAS  PubMed  Google Scholar 

  133. Bang, H.J., et al., Percutaneous cryoablation of metastatic renal cell carcinoma for local tumor control: feasibility, outcomes, and estimated cost-effectiveness for palliation. J Vasc Interv Radiol, 2012. 23(6): p. 770-7.

    Article  PubMed  Google Scholar 

  134. Welch, B.T., et al., Feasibility and oncologic control after percutaneous image guided ablation of metastatic renal cell carcinoma. J Urol, 2014. 192(2): p. 357-63.

    Article  PubMed  Google Scholar 

  135. Gardner, C.S., et al., Cryoablation of Bone Metastases from Renal Cell Carcinoma for Local Tumor Control. J Bone Joint Surg Am, 2017. 99(22): p. 1916-1926.

    Article  PubMed  Google Scholar 

  136. Clark, T.W., et al., Reporting standards for percutaneous thermal ablation of renal cell carcinoma. J Vasc Interv Radiol, 2009. 20(7 Suppl): p. S409-16.

    Article  PubMed  Google Scholar 

  137. Gonnet, A., et al., Renal cell carcinoma lung metastases treated by radiofrequency ablation integrated with systemic treatments: over 10 years of experience. BMC Cancer, 2019. 19(1): p. 1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Carrafiello, G., et al., Current role of interventions in metastatic kidney tumors: single center experience. Updates Surg, 2011. 63(4): p. 259-69.

    Article  PubMed  Google Scholar 

  139. Zimmermann, M., C. Kuhl, and S. Keil, Characteristic changes of the ablation zone on contrast-enhanced computed tomography after radiofrequency ablation of hepatic metastases. Indian J Radiol Imaging, 2018. 28(3): p. 320-326.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Granata, V., et al., Assessment of Ablation Therapy in Pancreatic Cancer: The Radiologist's Challenge. Front Oncol, 2020. 10: p. 560952.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Ahmed, M. and R. Technology Assessment Committee of the Society of Interventional, Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update: supplement to the consensus document. J Vasc Interv Radiol, 2014. 25(11): p. 1706-8.

    Article  PubMed  Google Scholar 

  142. Elias, D., et al., Necrotizing pancreatitis after radiofrequency destruction of pancreatic tumours. Eur J Surg Oncol, 2004. 30(1): p. 85-7.

    Article  CAS  PubMed  Google Scholar 

  143. Zaorsky, N.G., et al., Stereotactic ablative radiation therapy for oligometastatic renal cell carcinoma (SABR ORCA): a meta-analysis of 28 studies. Eur Urol Oncol, 2019. 2(5): p. 515-523.

    Article  PubMed  Google Scholar 

  144. Marvaso, G., et al., Oligo metastatic renal cell carcinoma: stereotactic body radiation therapy, if, when and how? Clin Transl Oncol, 2021.

  145. Buti, S., et al., Treatment Outcome of metastatic lesions from renal cell carcinoma underGoing Extra-cranial stereotactic body radioTHERapy: The together retrospective study. Cancer Treat Res Commun, 2020. 22: p. 100161.

    Article  PubMed  Google Scholar 

  146. Wang, C.J., et al., Safety and Efficacy of Stereotactic Ablative Radiation Therapy for Renal Cell Carcinoma Extracranial Metastases. Int J Radiat Oncol Biol Phys, 2017. 98(1): p. 91-100.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Grunwald, V., et al., An interdisciplinary consensus on the management of bone metastases from renal cell carcinoma. Nat Rev Urol, 2018. 15(8): p. 511-521.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Filippiadis, D., et al., Percutaneous ablation techniques for renal cell carcinoma: current status and future trends. Int J Hyperthermia, 2019. 36(2): p. 21-30.

    Article  CAS  PubMed  Google Scholar 

  149. Ahmed, M., et al., Principles of and advances in percutaneous ablation. Radiology, 2011. 258(2): p. 351-69.

    Article  PubMed  Google Scholar 

  150. Takaki, H., et al., Midterm results of radiofrequency ablation versus nephrectomy for T1a renal cell carcinoma. Jpn J Radiol, 2010. 28(6): p. 460-8.

    Article  PubMed  Google Scholar 

  151. Wah, T.M., et al., Radiofrequency ablation (RFA) of renal cell carcinoma (RCC): experience in 200 tumours. BJU Int, 2014. 113(3): p. 416-28.

    Article  PubMed  Google Scholar 

  152. Zagoria, R.J., et al., Long-term outcomes after percutaneous radiofrequency ablation for renal cell carcinoma. Urology, 2011. 77(6): p. 1393-7.

    Article  PubMed  Google Scholar 

  153. Ma, Y., et al., Long-term outcomes in healthy adults after radiofrequency ablation of T1a renal tumours. BJU Int, 2014. 113(1): p. 51-5.

    Article  PubMed  Google Scholar 

  154. Tracy, C.R., et al., Durable oncologic outcomes after radiofrequency ablation: experience from treating 243 small renal masses over 7.5 years. Cancer, 2010. 116(13): p. 3135-42.

    Article  PubMed  Google Scholar 

  155. Thompson, R.H., et al., Comparison of partial nephrectomy and percutaneous ablation for cT1 renal masses. Eur Urol, 2015. 67(2): p. 252-9.

    Article  PubMed  Google Scholar 

  156. Andrews, J.R., et al., Oncologic Outcomes Following Partial Nephrectomy and Percutaneous Ablation for cT1 Renal Masses. Eur Urol, 2019. 76(2): p. 244-251.

    Article  PubMed  Google Scholar 

  157. Carrafiello, G., et al., Microwave tumors ablation: principles, clinical applications and review of preliminary experiences. Int J Surg, 2008. 6 Suppl 1: p. S65-9.

    Article  PubMed  Google Scholar 

  158. Simon, C.J., D.E. Dupuy, and W.W. Mayo-Smith, Microwave ablation: principles and applications. Radiographics, 2005. 25 Suppl 1: p. S69-83.

    Article  PubMed  Google Scholar 

  159. Brace, C.L., Microwave tissue ablation: biophysics, technology, and applications. Crit Rev Biomed Eng, 2010. 38(1): p. 65-78.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Wah, T.M., Image-guided ablation of renal cell carcinoma. Clin Radiol, 2017. 72(8): p. 636-644.

    Article  CAS  PubMed  Google Scholar 

  161. Yu, J., et al., US-guided percutaneous microwave ablation of renal cell carcinoma: intermediate-term results. Radiology, 2012. 263(3): p. 900-8.

    Article  PubMed  Google Scholar 

  162. Yu, J., et al., Midterm results of percutaneous microwave ablation under ultrasound guidance versus retroperitoneal laparoscopic radial nephrectomy for small renal cell carcinoma. Abdom Imaging, 2015. 40(8): p. 3248-56.

    Article  PubMed  Google Scholar 

  163. Li, X., et al., Role of contrast-enhanced ultrasound in evaluating the efficiency of ultrasound guided percutaneous microwave ablation in patients with renal cell carcinoma. Radiol Oncol, 2013. 47(4): p. 398-404.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Ierardi, A.M., et al., Microwave ablation of malignant renal tumours: intermediate-term results and usefulness of RENAL and mRENAL scores for predicting outcomes and complications. Med Oncol, 2017. 34(5): p. 97.

    Article  PubMed  Google Scholar 

  165. Chan, P., et al., Percutaneous microwave ablation of renal cancers under CT guidance: safety and efficacy with a 2-year follow-up. Clin Radiol, 2017. 72(9): p. 786-792.

    Article  CAS  PubMed  Google Scholar 

  166. Klapperich, M.E., et al., Effect of Tumor Complexity and Technique on Efficacy and Complications after Percutaneous Microwave Ablation of Stage T1a Renal Cell Carcinoma: A Single-Center, Retrospective Study. Radiology, 2017. 284(1): p. 272-280.

    Article  PubMed  Google Scholar 

  167. Lagerveld, B.W., Cryosurgical induced injury of human cancerous tissues – How it works? British Journal of Medical and Surgical Urology, 2012. 5: p. S24-S27.

    Article  Google Scholar 

  168. Dominguez-Escrig, J.L., K. Sahadevan, and P. Johnson, Cryoablation for small renal masses. Adv Urol, 2008: p. 479495.

  169. Georgiades, C., et al., Determination of the nonlethal margin inside the visible "ice-ball" during percutaneous cryoablation of renal tissue. Cardiovasc Intervent Radiol, 2013. 36(3): p. 783-90.

    Article  PubMed  Google Scholar 

  170. Maybody, M., et al., Pneumodissection for skin protection in image-guided cryoablation of superficial musculoskeletal tumours. Eur Radiol, 2016. 27.

  171. Autorino, R. and J.H. Kaouk, Cryoablation for small renal tumors: current status and future perspectives. Urol Oncol, 2012. 30(4 Suppl): p. S20-7.

    Article  PubMed  Google Scholar 

  172. Sahgal, A., et al., The Canadian Association of Radiation Oncology Scope of Practice Guidelines for Lung, Liver and Spine Stereotactic Body Radiotherapy. Clinical oncology (Royal College of Radiologists (Great Britain)), 2012. 24: p. 629-39.

    Article  CAS  PubMed  Google Scholar 

  173. Swaminath, A. and W. Chu, Stereotactic body radiotherapy for the treatment of medically inoperable primary renal cell carcinoma: Current evidence and future directions. Canadian Urological Association journal = Journal de l'Association des urologues du Canada, 2015. 9: p. 275-80.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Siva, S., et al., Pooled analysis of stereotactic ablative radiotherapy for primary renal cell carcinoma: A report from the International Radiosurgery Oncology Consortium for Kidney (IROCK): Pooled Analysis of SABR for Primary RCC. Cancer, 2017. 124.

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Schieda.

Ethics declarations

Conflict of interest

No disclosures for any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haroon, M., Sathiadoss, P., Hibbert, R.M. et al. Imaging considerations for thermal and radiotherapy ablation of primary and metastatic renal cell carcinoma. Abdom Radiol 46, 5386–5407 (2021). https://doi.org/10.1007/s00261-021-03178-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-021-03178-6

Keywords

Navigation