Skip to main content

Advertisement

Log in

LI-RADS treatment response assessment of combination locoregional therapy for HCC

  • Special Section: HCC Treatment
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

HCC incidence continues to increase worldwide and is most frequently discovered at an advanced stage when limited curative options are available. Combination locoregional therapies have emerged to improve patient survival and quality of life or downstage patients to curative options. The increasing options for locoregional therapy combinations require an understanding of the expected post-treatment imaging appearance in order to assess treatment response. This review aims to describe the synergy between TACE combined with thermal ablation and TACE combined with SBRT. We will also illustrate expected imaging findings that determine treatment efficacy based on the mechanism of tissue injury using the LI-RADS Treatment Response Algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Petrick JL, Florio AA, Znaor A, et al (2020) International trends in hepatocellular carcinoma incidence, 1978–2012. International Journal of Cancer 147:317–330. https://doi.org/10.1002/ijc.32723

    Article  CAS  PubMed  Google Scholar 

  2. (2018) EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. Journal of Hepatology 69:182–236. https://doi.org/10.1016/j.jhep.2018.03.019

  3. Heimbach JK, Kulik LM, Finn RS, et al (2018) AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 67:358–380. https://doi.org/10.1002/hep.29086

    Article  PubMed  Google Scholar 

  4. Aslam A, Do RKG, Kambadakone A, et al (2020) Hepatocellular carcinoma Liver Imaging Reporting and Data Systems treatment response assessment: Lessons learned and future directions. World J Hepatol 12:738–753. https://doi.org/10.4254/wjh.v12.i10.738

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lencioni R, Llovet JM (2010) Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 30:52–60. https://doi.org/10.1055/s-0030-1247132

    Article  CAS  PubMed  Google Scholar 

  6. Kudo M, Han G, Finn RS, et al (2014) Brivanib as adjuvant therapy to transarterial chemoembolization in patients with hepatocellular carcinoma: A randomized phase III trial: HEPATOLOGY, Vol. XX, No. X, 2014 KUDO ET AL. Hepatology 60:1697–1707. https://doi.org/10.1002/hep.27290

  7. Vincenzi B, Maio MD, Silletta M, et al (2015) Prognostic Relevance of Objective Response According to EASL Criteria and mRECIST Criteria in Hepatocellular Carcinoma Patients Treated with Loco-Regional Therapies: A Literature-Based Meta-Analysis. PLOS ONE 10:e0133488. https://doi.org/10.1371/journal.pone.0133488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lencioni R, Montal R, Torres F, et al (2017) Objective response by mRECIST as a predictor and potential surrogate end-point of overall survival in advanced HCC. Journal of Hepatology 66:1166–1172. https://doi.org/10.1016/j.jhep.2017.01.012

    Article  PubMed  Google Scholar 

  9. Johnson PJ, Qin S, Park J-W, et al (2013) Brivanib Versus Sorafenib As First-Line Therapy in Patients With Unresectable, Advanced Hepatocellular Carcinoma: Results From the Randomized Phase III BRISK-FL Study. JCO 31:3517–3524. https://doi.org/10.1200/JCO.2012.48.4410

    Article  CAS  Google Scholar 

  10. Kudo M, Ueshima K, Yokosuka O, et al (2018) Sorafenib plus low-dose cisplatin and fluorouracil hepatic arterial infusion chemotherapy versus sorafenib alone in patients with advanced hepatocellular carcinoma (SILIUS): a randomised, open label, phase 3 trial. The Lancet Gastroenterology & Hepatology 3:424–432. https://doi.org/10.1016/S2468-1253(18)30078-5

    Article  Google Scholar 

  11. Llovet JM, Decaens T, Raoul J-L, et al (2013) Brivanib in Patients With Advanced Hepatocellular Carcinoma Who Were Intolerant to Sorafenib or for Whom Sorafenib Failed: Results From the Randomized Phase III BRISK-PS Study. JCO 31:3509–3516. https://doi.org/10.1200/JCO.2012.47.3009

    Article  CAS  Google Scholar 

  12. Llovet JM, Lencioni R (2020) mRECIST for HCC: Performance and novel refinements. Journal of Hepatology 72:288–306. https://doi.org/10.1016/j.jhep.2019.09.026

    Article  PubMed  Google Scholar 

  13. American College of Radiology Liver Imaging Reporting and Data System, v2018 CT/MR Manual

  14. Cools KS, Moon AM, Burke LMB, et al (2020) Validation of the Liver Imaging Reporting and Data System Treatment Response Criteria After Thermal Ablation for Hepatocellular Carcinoma. Liver Transplantation 26:203–214. https://doi.org/10.1002/lt.25673

    Article  PubMed  Google Scholar 

  15. Abdel Razek A a. K, El-Serougy LG, Saleh GA, et al (2020) Reproducibility of LI-RADS treatment response algorithm for hepatocellular carcinoma after locoregional therapy. Diagn Interv Imaging 101:547–553. https://doi.org/10.1016/j.diii.2020.03.008

  16. Chaudhry M, McGinty KA, Mervak B, et al (2020) The LI-RADS Version 2018 MRI Treatment Response Algorithm: Evaluation of Ablated Hepatocellular Carcinoma. Radiology 294:320–326. https://doi.org/10.1148/radiol.2019191581

    Article  PubMed  Google Scholar 

  17. Kim SW, Joo I, Kim H-C, et al (2020) LI-RADS treatment response categorization on gadoxetic acid-enhanced MRI: diagnostic performance compared to mRECIST and added value of ancillary features. Eur Radiol 30:2861–2870. https://doi.org/10.1007/s00330-019-06623-9

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Wang J, Li H, et al (2020) Performance of LI-RADS version 2018 CT treatment response algorithm in tumor response evaluation and survival prediction of patients with single hepatocellular carcinoma after radiofrequency ablation. Ann Transl Med 8:388. https://doi.org/10.21037/atm.2020.03.120

  19. Seo N, Kim MS, Park M-S, et al (2020) Evaluation of treatment response in hepatocellular carcinoma in the explanted liver with Liver Imaging Reporting and Data System version 2017. Eur Radiol 30:261–271. https://doi.org/10.1007/s00330-019-06376-5

    Article  PubMed  Google Scholar 

  20. Thibodeau-Antonacci A, Petitclerc L, Gilbert G, et al (2019) Dynamic contrast-enhanced MRI to assess hepatocellular carcinoma response to Transarterial chemoembolization using LI-RADS criteria: A pilot study. Magnetic Resonance Imaging 62:78–86. https://doi.org/10.1016/j.mri.2019.06.017

    Article  PubMed  Google Scholar 

  21. Shropshire EL, Chaudhry M, Miller CM, et al (2019) LI-RADS Treatment Response Algorithm: Performance and Diagnostic Accuracy. Radiology 292:226–234. https://doi.org/10.1148/radiol.2019182135

    Article  PubMed  Google Scholar 

  22. Mendiratta-Lala M, Masch W, Shankar PR, et al (2019) Magnetic Resonance Imaging Evaluation of Hepatocellular Carcinoma Treated With Stereotactic Body Radiation Therapy: Long Term Imaging Follow-Up. Int J Radiat Oncol Biol Phys 103:169–179. https://doi.org/10.1016/j.ijrobp.2018.09.004

    Article  PubMed  Google Scholar 

  23. Gaba RC, Lewandowski RJ, Hickey R, et al (2016) Transcatheter Therapy for Hepatic Malignancy: Standardization of Terminology and Reporting Criteria. Journal of Vascular and Interventional Radiology 27:457–473. https://doi.org/10.1016/j.jvir.2015.12.752

    Article  PubMed  Google Scholar 

  24. Inchingolo R, Posa A, Mariappan M, Spiliopoulos S (2019) Locoregional treatments for hepatocellular carcinoma: Current evidence and future directions. 25:16

    Google Scholar 

  25. Ahmed M, Solbiati L, Brace CL, et al (2014) Image-guided Tumor Ablation: Standardization of Terminology and Reporting Criteria—A 10-Year Update. Radiology 273:241–260. https://doi.org/10.1148/radiol.14132958

    Article  PubMed  Google Scholar 

  26. Marrero JA, Kulik LM, Sirlin CB, et al (2018) Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 68:723–750. https://doi.org/10.1002/hep.29913

    Article  PubMed  Google Scholar 

  27. Sutter O, Calvo J, N’Kontchou G, et al (2017) Safety and Efficacy of Irreversible Electroporation for the Treatment of Hepatocellular Carcinoma Not Amenable to Thermal Ablation Techniques: A Retrospective Single-Center Case Series. Radiology 284:877–886. https://doi.org/10.1148/radiol.2017161413

    Article  PubMed  Google Scholar 

  28. Tameez Ud Din A, Tameez-ud-din A, Chaudhary FMD, et al Irreversible Electroporation For Liver Tumors: A Review Of Literature. Cureus 11:. https://doi.org/10.7759/cureus.4994

  29. Lu DSK, Raman SS, Vodopich DJ, et al (2002) Effect of Vessel Size on Creation of Hepatic Radiofrequency Lesions in Pigs: Assessment of the “Heat Sink” Effect. American Journal of Roentgenology 178:47–51. https://doi.org/10.2214/ajr.178.1.1780047

    Article  PubMed  Google Scholar 

  30. Goldberg SN, Gazelle GS (2001) Radiofrequency tissue ablation: physical principles and techniques for increasing coagulation necrosis. Hepatogastroenterology 48:359–367

    CAS  PubMed  Google Scholar 

  31. Young S, Golzarian J (2020) Locoregional Therapies in the Treatment of 3- to 5-cm Hepatocellular Carcinoma: Critical Review of the Literature. American Journal of Roentgenology 215:223–234. https://doi.org/10.2214/AJR.19.22098

    Article  PubMed  Google Scholar 

  32. Iezzi R, Pompili M, Posa A, et al (2016) Combined locoregional treatment of patients with hepatocellular carcinoma: State of the art. World J Gastroenterol 22:1935–1942. https://doi.org/10.3748/wjg.v22.i6.1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rossi S, Garbagnati F, Lencioni R, et al (2000) Percutaneous radio-frequency thermal ablation of nonresectable hepatocellular carcinoma after occlusion of tumor blood supply. Radiology 217:119–126. https://doi.org/10.1148/radiology.217.1.r00se02119

    Article  CAS  PubMed  Google Scholar 

  34. Chang Y, Jeong SW, Young Jang J, Jae Kim Y (2020) Recent Updates of Transarterial Chemoembolilzation in Hepatocellular Carcinoma. Int J Mol Sci 21:. https://doi.org/10.3390/ijms21218165

  35. Hickey RM, Lewandowski RJ, Salem R (2016) Yttrium-90 Radioembolization for Hepatocellular Carcinoma. Seminars in Nuclear Medicine 46:105–108. https://doi.org/10.1053/j.semnuclmed.2015.10.011

    Article  PubMed  Google Scholar 

  36. Tang J, Liu F, Yuan H, et al (2020) Pretreatment Apparent Diffusion Coefficient as a Predictor of Response to Transcatheter Arterial Chemoembolization Immediately Combined with Radiofrequency Ablation for Treatment of Solitary Large Hepatocellular Carcinoma. Cancer Manag Res 12:10127–10138. https://doi.org/10.2147/CMAR.S270470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yuan H, Liu F, Li X, et al (2019) Transcatheter arterial chemoembolization combined with simultaneous DynaCT-guided radiofrequency ablation in the treatment of solitary large hepatocellular carcinoma. Radiol Med 124:1–7. https://doi.org/10.1007/s11547-018-0932-1

    Article  PubMed  Google Scholar 

  38. Yuan H, Liu F, Li X, et al (2019) Angio-CT-Guided Transarterial Chemoembolization Immediately in Combination with Radiofrequency Ablation for Large Hepatocellular Carcinoma. Academic Radiology 26:224–231. https://doi.org/10.1016/j.acra.2018.04.007

    Article  PubMed  Google Scholar 

  39. Wang Z-J, Wang M-Q, Duan F, et al (2013) Transcatheter arterial chemoembolization followed by immediate radiofrequency ablation for large solitary hepatocellular carcinomas. World J Gastroenterol 19:4192–4199. https://doi.org/10.3748/wjg.v19.i26.4192

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yan J-Y, Zhang J-L, Wang M-Q, et al (2018) Combined transcatheter arterial chemoembolization and radiofrequency ablation in single-session for solitary hepatocellular carcinoma larger than 7 cm. Asia Pac J Clin Oncol 14:300–309. https://doi.org/10.1111/ajco.12817

    Article  PubMed  Google Scholar 

  41. Hoffmann R, Rempp H, Syha R, et al (2014) Transarterial chemoembolization using drug eluting beads and subsequent percutaneous MR-guided radiofrequency ablation in the therapy of intermediate sized hepatocellular carcinoma. European Journal of Radiology 83:1793–1798. https://doi.org/10.1016/j.ejrad.2014.06.031

    Article  PubMed  Google Scholar 

  42. Kim JH, Won HJ, Shin YM, et al (2011) Medium-Sized (3.1–5.0 cm) Hepatocellular Carcinoma: Transarterial Chemoembolization Plus Radiofrequency Ablation Versus Radiofrequency Ablation Alone. Ann Surg Oncol 18:1624–1629. https://doi.org/10.1245/s10434-011-1673-8

    Article  PubMed  Google Scholar 

  43. Kim JW, Shin SS, Kim JK, et al (2013) Radiofrequency Ablation Combined with Transcatheter Arterial Chemoembolization for the Treatment of Single Hepatocellular Carcinoma of 2 to 5 cm in Diameter: Comparison with Surgical Resection. Korean J Radiol 10

  44. Xu Z, Xie H, Zhou L, et al (2019) The Combination Strategy of Transarterial Chemoembolization and Radiofrequency Ablation or Microwave Ablation against Hepatocellular Carcinoma. Anal Cell Pathol (Amst) 2019:. https://doi.org/10.1155/2019/8619096

  45. Voizard N, Cerny M, Assad A, et al (2019) Assessment of hepatocellular carcinoma treatment response with LI-RADS: a pictorial review. Insights Imaging 10:121. https://doi.org/10.1186/s13244-019-0801-z

    Article  PubMed  PubMed Central  Google Scholar 

  46. Guan Y-S, Sun L, Zhou X-P, et al (2004) Hepatocellular carcinoma treated with interventional procedures: CT and MRI follow-up. World Journal of Gastroenterology 10:3543–3548. https://doi.org/10.3748/wjg.v10.i24.3543

    Article  PubMed  PubMed Central  Google Scholar 

  47. Idée J-M, Guiu B (2013) Use of Lipiodol as a drug-delivery system for transcatheter arterial chemoembolization of hepatocellular carcinoma: A review. Critical Reviews in Oncology/Hematology 88:530–549. https://doi.org/10.1016/j.critrevonc.2013.07.003

    Article  PubMed  Google Scholar 

  48. Chen C-S, Li F-K, Guo C-Y, et al (2016) Tumor vascularity and lipiodol deposition as early radiological markers for predicting risk of disease progression in patients with unresectable hepatocellular carcinoma after transarterial chemoembolization. Oncotarget 7:7241–7252. https://doi.org/10.18632/oncotarget.6892

  49. Kim SJ, Choi MS, Kang JY, et al (2009) Prediction of complete necrosis of hepatocellular carcinoma treated with transarterial chemoembolization prior to liver transplantation. Gut Liver 3:285–291. https://doi.org/10.5009/gnl.2009.3.4.285

    Article  PubMed  PubMed Central  Google Scholar 

  50. Miszczuk MA, Chapiro J, Geschwind J-FH, et al (2020) Lipiodol as an Imaging Biomarker of Tumor Response After Conventional Transarterial Chemoembolization: Prospective Clinical Validation in Patients with Primary and Secondary Liver Cancer. Transl Oncol 13:100742. https://doi.org/10.1016/j.tranon.2020.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bae JS, Lee JM, Yoon JH, et al (2021) Evaluation of LI-RADS Version 2018 Treatment Response Algorithm for Hepatocellular Carcinoma in Liver Transplant Candidates: Intraindividual Comparison between CT and Hepatobiliary Agent–enhanced MRI. Radiology 203537. https://doi.org/10.1148/radiol.2021203537

  52. Zhao J, Zeng L, Wu Q, et al (2019) Stereotactic Body Radiotherapy Combined with Transcatheter Arterial Chemoembolization versus Stereotactic Body Radiotherapy Alone as the First-Line Treatment for Unresectable Hepatocellular Carcinoma: A Meta-Analysis and Systematic Review. Chemotherapy 64:248–258. https://doi.org/10.1159/000505739

    Article  CAS  PubMed  Google Scholar 

  53. Huo YR, Eslick GD (2015) Transcatheter Arterial Chemoembolization Plus Radiotherapy Compared With Chemoembolization Alone for Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. JAMA Oncol 1:756. https://doi.org/10.1001/jamaoncol.2015.2189

    Article  PubMed  Google Scholar 

  54. Steel GG, Peckham MJ (1979) Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys 5:85–91. https://doi.org/10.1016/0360-3016(79)90044-0

    Article  CAS  PubMed  Google Scholar 

  55. Meng M-B, Cui Y-L, Lu Y, et al (2009) Transcatheter arterial chemoembolization in combination with radiotherapy for unresectable hepatocellular carcinoma: A systematic review and meta-analysis. Radiotherapy and Oncology 92:184–194. https://doi.org/10.1016/j.radonc.2008.11.002

    Article  PubMed  Google Scholar 

  56. Seong J, Kim SH, Suh CO (2001) Enhancement of tumor radioresponse by combined chemotherapy in murine hepatocarcinoma1. Journal of Gastroenterology and Hepatology 16:883–889. https://doi.org/10.1046/j.1440-1746.2001.02533.x

    Article  CAS  PubMed  Google Scholar 

  57. Syljuåsen RG (2019) Cell Cycle Effects in Radiation Oncology. In: Wenz F (ed) Radiation Oncology. Springer International Publishing, Cham, pp 1–8

    Google Scholar 

  58. Kimura T, Doi Y, Takahashi S, et al (2020) An overview of stereotactic body radiation therapy for hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 14:271–279. https://doi.org/10.1080/17474124.2020.1744434

    Article  CAS  PubMed  Google Scholar 

  59. Mastrocostas K, Jang H-J, Fischer S, et al (2019) Imaging post-stereotactic body radiation therapy responses for hepatocellular carcinoma: typical imaging patterns and pitfalls. Abdom Radiol 44(5):1795–1807. https://doi.org/10.1007/s00261-019-01901-y

    Article  Google Scholar 

  60. Mendiratta-Lala M, Masch W, Owen D, et al (2020) Natural history of hepatocellular carcinoma after stereotactic body radiation therapy. Abdom Radiol 45:3698–3708. https://doi.org/10.1007/s00261-020-02532-4

    Article  Google Scholar 

  61. Tezuka M, Hayashi K, Kubota K, et al (2007) Growth Rate of Locally Recurrent Hepatocellular Carcinoma After Transcatheter Arterial Chemoembolization: Comparing the Growth Rate of Locally Recurrent Tumor with That of Primary Hepatocellular Carcinoma. Dig Dis Sci 52:783–788. https://doi.org/10.1007/s10620-006-9537-y

    Article  PubMed  Google Scholar 

  62. Tétreau R, Llacer C, Riou O, Deshayes E (2017) Evaluation of response after SBRT for liver tumors. Rep Pract Oncol Radiother 22:170–175. https://doi.org/10.1016/j.rpor.2015.12.004

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marielia Gerena.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerena, M., Molvar, C., Masciocchi, M. et al. LI-RADS treatment response assessment of combination locoregional therapy for HCC. Abdom Radiol 46, 3634–3647 (2021). https://doi.org/10.1007/s00261-021-03165-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-021-03165-x

Keywords

Navigation