Skip to main content
Log in

Radiomics of hepatocellular carcinoma: promising roles in patient selection, prediction, and assessment of treatment response

  • Special Section: HCC treatment
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Radiomics refers to the process of conversion of conventional medical images into quantifiable data (“features”) which can be further mined to reveal complex patterns and relationships between the voxels in the image. These high throughput features can potentially reflect the histology of biologic tissues at macroscopic and microscopic levels. Several studies have investigated radiomics of hepatocellular carcinoma (HCC) before and after treatment. HCC is a heterogeneous disease with diverse phenotypical and genotypical landscape. Due to this inherent heterogeneity, HCC lesions can manifest variable aggressiveness with different response to treatment options, including the newer targeted therapies. Hence, radiomics can be used as a potential tool to enable patient selection for therapies and to predict response to treatments and outcome. Additionally, radiomics may serve as a tool for earlier and more efficient assessment of response to treatment. Radiomics, radiogenomics, and radio-immunoprofiling and their potential roles in management of patients with HCC will be discussed and critically reviewed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gillies, R.J., P.E. Kinahan, and H. Hricak, Radiomics: Images Are More than Pictures, They Are Data. Radiology, 2016. 278(2): p. 563-77.

    PubMed  Google Scholar 

  2. Khemlina, G., S. Ikeda, and R. Kurzrock, The biology of Hepatocellular carcinoma: implications for genomic and immune therapies. Mol Cancer, 2017. 16(1): p. 149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kurebayashi, Y., et al., Landscape of immune microenvironment in hepatocellular carcinoma and its additional impact on histological and molecular classification. Hepatology, 2018. 68(3): p. 1025-1041.

    Article  CAS  PubMed  Google Scholar 

  4. Villanueva, A., et al., New strategies in hepatocellular carcinoma: genomic prognostic markers. Clin Cancer Res, 2010. 16(19): p. 4688-94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cariani, E., et al., Immunological and molecular correlates of disease recurrence after liver resection for hepatocellular carcinoma. PLoS One, 2012. 7(3): p. e32493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lewis, S., S. Hectors, and B. Taouli, Radiomics of hepatocellular carcinoma. Abdom Radiol (NY), 2020.

  7. Miranda Magalhaes Santos, J.M., et al., State-of-the-art in radiomics of hepatocellular carcinoma: a review of basic principles, applications, and limitations. Abdom Radiol (NY), 2020. 45(2): p. 342–353.

  8. van Griethuysen, J.J.M., et al., Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res, 2017. 77(21): p. e104-e107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Zhang, L., et al., IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics. Med Phys, 2015. 42(3): p. 1341-53.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Apte, A.P., et al., Technical Note: Extension of CERR for computational radiomics: A comprehensive MATLAB platform for reproducible radiomics research. Med Phys, 2018.

  11. Nioche, C., et al., LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity. Cancer Res, 2018. 78(16): p. 4786-4789.

    Article  CAS  PubMed  Google Scholar 

  12. Pfaehler, E., et al., RaCaT: An open source and easy to use radiomics calculator tool. PLoS One, 2019. 14(2): p. e0212223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chlebus, G., et al., Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing. Scientific Reports, 2018. 8(1): p. 15497.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Fave, X., et al., Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer. Translational Cancer Research, 2016. 5(4): p. 349-363.

    Article  CAS  Google Scholar 

  15. Shafiq-Ul-Hassan, M., et al., Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Medical physics, 2017. 44(3): p. 1050-1062.

    Article  CAS  PubMed  Google Scholar 

  16. Velichko, Y.S., et al., Association Between the Size and 3D CT-Based Radiomic Features of Breast Cancer Hepatic Metastasis. Academic Radiology, 2020.

  17. Lehmann, T.M., C. Gonner, and K. Spitzer, Addendum: B-spline interpolation in medical image processing. IEEE Transactions on Medical Imaging, 2001. 20(7): p. 660-665.

    Article  CAS  PubMed  Google Scholar 

  18. Duron, L., et al., Gray-level discretization impacts reproducible MRI radiomics texture features. PLOS ONE, 2019. 14(3): p. e0213459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zwanenburg, A., et al., Image biomarker standardisation initiative-feature definitions. arXiv preprint arXiv:1612.07003, 2016.

  20. Haralick, R.M., K. Shanmugam, and I. Dinstein, Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, 1973. SMC-3(6): p. 610–621.

  21. Parekh, V. and M.A. Jacobs, Radiomics: a new application from established techniques. Expert review of precision medicine and drug development, 2016. 1(2): p. 207-226.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yip, S.S. and H.J. Aerts, Applications and limitations of radiomics. Phys Med Biol, 2016. 61(13): p. R150-66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Di Giovanni, P., et al., The biological correlates of macroscopic breast tumour structure measured using fractal analysis in patients undergoing neoadjuvant chemotherapy. Breast Cancer Research and Treatment, 2012. 133(3): p. 1199-1206.

    Article  PubMed  CAS  Google Scholar 

  24. Balboa, R.M. and N.M. Grzywacz, Power spectra and distribution of contrasts of natural images from different habitats. Vision Research, 2003. 43(24): p. 2527-2537.

    Article  PubMed  Google Scholar 

  25. Baish, J.W. and R.K. Jain, Fractals and Cancer. Cancer Research, 2000. 60(14): p. 3683-3688.

    CAS  PubMed  Google Scholar 

  26. Wang, X.-H., et al., MRI-based radiomics model for preoperative prediction of 5-year survival in patients with hepatocellular carcinoma. British Journal of Cancer, 2020. 122(7): p. 978-985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zwanenburg, A., et al., The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology, 2020. 295(2): p. 328-338.

    Article  PubMed  Google Scholar 

  28. Parmar, C., et al., Machine Learning methods for Quantitative Radiomic Biomarkers. Scientific Reports, 2015. 5(1): p. 13087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tibshirani, R., Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society. Series B (Methodological), 1996. 58(1): p. 267–288.

  30. Clark, K., et al., The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. Journal of Digital Imaging, 2013. 26(6): p. 1045-1057.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Llovet, J.M., et al., Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol, 2018. 15(10): p. 599-616.

    Article  PubMed  Google Scholar 

  32. Goossens, N., X. Sun, and Y. Hoshida, Molecular classification of hepatocellular carcinoma: potential therapeutic implications. Hepat Oncol, 2015. 2(4): p. 371-379.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Friemel, J., et al., Intratumor heterogeneity in hepatocellular carcinoma. Clin Cancer Res, 2015. 21(8): p. 1951-61.

    Article  CAS  PubMed  Google Scholar 

  34. Liu, J., H. Dang, and X.W. Wang, The significance of intertumor and intratumor heterogeneity in liver cancer. Exp Mol Med, 2018. 50(1): p. e416.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Segal, E., et al., Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol, 2007. 25(6): p. 675-80.

    Article  CAS  PubMed  Google Scholar 

  36. Taouli, B., et al., Imaging-based surrogate markers of transcriptome subclasses and signatures in hepatocellular carcinoma: preliminary results. Eur Radiol, 2017. 27(11): p. 4472-4481.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hectors, S.J., et al., MRI radiomics features predict immuno-oncological characteristics of hepatocellular carcinoma. Eur Radiol, 2020. 30(7): p. 3759-3769.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Furlan, A., et al., A radiogenomic analysis of hepatocellular carcinoma: association between fractional allelic imbalance rate index and the liver imaging reporting and data system (LI-RADS) categories and features. Br J Radiol, 2018. 91(1086): p. 20170962.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kuo, M.D., et al., Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma. J Vasc Interv Radiol, 2007. 18(7): p. 821-31.

    Article  PubMed  Google Scholar 

  40. Wakabayashi, T., et al., Radiomics in hepatocellular carcinoma: a quantitative review. Hepatol Int, 2019. 13(5): p. 546-559.

    Article  PubMed  Google Scholar 

  41. Xia, W., et al., Radiogenomics of hepatocellular carcinoma: multiregion analysis-based identification of prognostic imaging biomarkers by integrating gene data-a preliminary study. Phys Med Biol, 2018. 63(3): p. 035044.

    Article  PubMed  CAS  Google Scholar 

  42. Hectors, S.J., et al., Quantification of hepatocellular carcinoma heterogeneity with multiparametric magnetic resonance imaging. Sci Rep, 2017. 7(1): p. 2452.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zhu, A.X., et al., Ramucirumab in advanced hepatocellular carcinoma in REACH-2: the true value of alpha-fetoprotein. Lancet Oncol, 2019. 20(4): p. e191.

    Article  PubMed  Google Scholar 

  44. Sia, D., et al., Identification of an Immune-specific Class of Hepatocellular Carcinoma, Based on Molecular Features. Gastroenterology, 2017. 153(3): p. 812-826.

    CAS  PubMed  Google Scholar 

  45. Sun, R., et al., A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol, 2018. 19(9): p. 1180-1191.

    Article  CAS  PubMed  Google Scholar 

  46. Ruiz de Galarreta, M., et al., beta-Catenin Activation Promotes Immune Escape and Resistance to Anti-PD-1 Therapy in Hepatocellular Carcinoma. Cancer Discov, 2019. 9(8): p. 1124–1141.

  47. Gabrielson, A., et al., Intratumoral CD3 and CD8 T-cell Densities Associated with Relapse-Free Survival in HCC. Cancer Immunol Res, 2016. 4(5): p. 419-30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sun, C., et al., The predictive value of centre tumour CD8(+) T cells in patients with hepatocellular carcinoma: comparison with Immunoscore. Oncotarget, 2015. 6(34): p. 35602-15.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yao, Q., et al., Prognostic value of immunoscore to identify mortality outcomes in adults with HBV-related primary hepatocellular carcinoma. Medicine (Baltimore), 2017. 96(17): p. e6735.

    Article  CAS  Google Scholar 

  50. Garnelo, M., et al., Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma. Gut, 2017. 66(2): p. 342-351.

    Article  CAS  PubMed  Google Scholar 

  51. Chen, S., et al., Pretreatment prediction of immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-EOB-DTPA-enhanced MRI imaging. Eur Radiol, 2019. 29(8): p. 4177-4187.

    Article  PubMed  Google Scholar 

  52. Liao, H., et al., Preoperative Radiomic Approach to Evaluate Tumor-Infiltrating CD8(+) T Cells in Hepatocellular Carcinoma Patients Using Contrast-Enhanced Computed Tomography. Ann Surg Oncol, 2019. 26(13): p. 4537-4547.

    Article  PubMed  Google Scholar 

  53. Inchingolo, R., et al., Locoregional treatments for hepatocellular carcinoma: Current evidence and future directions. World J Gastroenterol, 2019. 25(32): p. 4614-4628.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bruix, J., M. Reig, and M. Sherman, Evidence-Based Diagnosis, Staging, and Treatment of Patients With Hepatocellular Carcinoma. Gastroenterology, 2016. 150(4): p. 835-53.

    Article  PubMed  Google Scholar 

  55. Chernyak, V., et al., Liver Imaging Reporting and Data System (LI-RADS) Version 2018: Imaging of Hepatocellular Carcinoma in At-Risk Patients. Radiology, 2018. 289(3): p. 816-830.

    Article  PubMed  Google Scholar 

  56. Mendiratta-Lala, M., et al., Natural history of hepatocellular carcinoma after stereotactic body radiation therapy. Abdom Radiol (NY), 2020. 45(11): p. 3698-3708.

    Article  Google Scholar 

  57. Kloth, C., et al., Evaluation of Texture Analysis Parameter for Response Prediction in Patients with Hepatocellular Carcinoma Undergoing Drug-eluting Bead Transarterial Chemoembolization (DEB-TACE) Using Biphasic Contrast-enhanced CT Image Data: Correlation with Liver Perfusion CT. Acad Radiol, 2017. 24(11): p. 1352-1363.

    Article  PubMed  Google Scholar 

  58. Yu, J.Y., et al., Value of texture analysis based on enhanced MRI for predicting an early therapeutic response to transcatheter arterial chemoembolisation combined with high-intensity focused ultrasound treatment in hepatocellular carcinoma. Clin Radiol, 2018. 73(8): p. 758 e9–758 e18.

  59. Gordic, S., et al., Prediction of hepatocellular carcinoma response to (90)Yttrium radioembolization using volumetric ADC histogram quantification: preliminary results. Cancer Imaging, 2019. 19(1): p. 29.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sun, Y., et al., Predicting the Outcome of Transcatheter Arterial Embolization Therapy for Unresectable Hepatocellular Carcinoma Based on Radiomics of Preoperative Multiparameter MRI. J Magn Reson Imaging, 2020. 52(4): p. 1083-1090.

    Article  PubMed  Google Scholar 

  61. Reis, S.P., et al., Tumor Enhancement and Heterogeneity Are Associated With Treatment Response to Drug-Eluting Bead Chemoembolization for Hepatocellular Carcinoma. J Comput Assist Tomogr, 2017. 41(2): p. 289-293.

    Article  PubMed  Google Scholar 

  62. Park, H.J., et al., Prediction of Therapeutic Response of Hepatocellular Carcinoma to Transcatheter Arterial Chemoembolization Based on Pretherapeutic Dynamic CT and Textural Findings. AJR Am J Roentgenol, 2017. 209(4): p. W211-W220.

    Article  PubMed  Google Scholar 

  63. Llovet, J.M., et al., Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat Rev Clin Oncol, 2015. 12(8): p. 436.

    Article  PubMed  Google Scholar 

  64. Llovet, J.M., et al., Sorafenib in advanced hepatocellular carcinoma. N Engl J Med, 2008. 359(4): p. 378-90.

    Article  CAS  PubMed  Google Scholar 

  65. Cheng, A.L., et al., Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol, 2009. 10(1): p. 25-34.

    Article  CAS  PubMed  Google Scholar 

  66. European Association for the Study of the Liver. Electronic address, e.e.e. and L. European Association for the Study of the, EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol, 2018. 69(1): p. 182–236.

  67. [67] Finn, R.S. and A.L. Cheng, Atezolizumab and Bevacizumab in Hepatocellular Carcinoma. Reply. N Engl J Med, 2020. 383(7): p. 695.

    PubMed  Google Scholar 

  68. Lee, M.S., et al., Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): an open-label, multicentre, phase 1b study. Lancet Oncol, 2020. 21(6): p. 808-820.

    Article  CAS  PubMed  Google Scholar 

  69. Bteich, F. and A.M. Di Bisceglie, Current and Future Systemic Therapies for Hepatocellular Carcinoma. Gastroenterol Hepatol (N Y), 2019. 15(5): p. 266-272.

    Google Scholar 

  70. Mule, S., et al., Advanced Hepatocellular Carcinoma: Pretreatment Contrast-enhanced CT Texture Parameters as Predictive Biomarkers of Survival in Patients Treated with Sorafenib. Radiology, 2018. 288(2): p. 445-455.

    Article  PubMed  Google Scholar 

  71. Fu, S., et al., Texture analysis of intermediate-advanced hepatocellular carcinoma: prognosis and patients' selection of transcatheter arterial chemoembolization and sorafenib. Oncotarget, 2017. 8(23): p. 37855-37865.

    Article  PubMed  Google Scholar 

  72. Liu, Q.P., et al., Prediction of prognostic risk factors in hepatocellular carcinoma with transarterial chemoembolization using multi-modal multi-task deep learning. EClinicalMedicine, 2020. 23: p. 100379.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Meng, X.P., et al., Radiomics Analysis on Multiphase Contrast-Enhanced CT: A Survival Prediction Tool in Patients With Hepatocellular Carcinoma Undergoing Transarterial Chemoembolization. Front Oncol, 2020. 10: p. 1196.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Song, W., et al., MRI-Based Radiomics: Associations With the Recurrence-Free Survival of Patients With Hepatocellular Carcinoma Treated With Conventional Transcatheter Arterial Chemoembolization. J Magn Reson Imaging, 2020. 52(2): p. 461-473.

    Article  PubMed  Google Scholar 

  75. Wang, X.H., et al., MRI-based radiomics model for preoperative prediction of 5-year survival in patients with hepatocellular carcinoma. Br J Cancer, 2020. 122(7): p. 978-985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim, J., et al., Predicting Survival Using Pretreatment CT for Patients With Hepatocellular Carcinoma Treated With Transarterial Chemoembolization: Comparison of Models Using Radiomics. AJR Am J Roentgenol, 2018. 211(5): p. 1026-1034.

    Article  PubMed  Google Scholar 

  77. Blanc-Durand, P., et al., Signature of survival: a (18)F-FDG PET based whole-liver radiomic analysis predicts survival after (90)Y-TARE for hepatocellular carcinoma. Oncotarget, 2018. 9(4): p. 4549-4558.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir A. Borhani.

Ethics declarations

Disclosure

The authors have nothing relevant to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borhani, A.A., Catania, R., Velichko, Y.S. et al. Radiomics of hepatocellular carcinoma: promising roles in patient selection, prediction, and assessment of treatment response. Abdom Radiol 46, 3674–3685 (2021). https://doi.org/10.1007/s00261-021-03085-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-021-03085-w

Keywords

Navigation