Skip to main content

Advertisement

Log in

Diagnosis of hilar cholangiocarcinoma using intravoxel incoherent motion diffusion-weighted magnetic resonance imaging

  • Interventional Radiology
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Objective

To investigate the value of intravoxel incoherent motion diffusion-weighed magnetic resonance imaging (IVIM-DWI) in discriminating the pathological grades of hilar cholangiocarcinoma (HC).

Patients and methods

Thirty-seven HC patients were enrolled and received routine and advanced DWI scanning with multiple b-values. IVIM-DWI images were obtained using echo-planar imaging sequence.

Results

The consistency of the maximum cross-sectional area ROI measuring method was higher than that of the repeated sampling ROI measuring method. ADCslow values were closely correlated with the pathological grades of HC. The degrees of biliary dilatation and MELD scores had no influence on the negative correlation between ADCslow values and the pathological degrees of HC patients.

Conclusions

ADCslow values could be applied in indicating the pathological grades of HC, which was independent on the extent of biliary dilatation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nakanuma, Y., et al., Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J Hepatol, 2010. 2(12): p. 419-27.

    Article  Google Scholar 

  2. Andersen, J.B., et al., Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology, 2012. 142(4): p. 1021–1031 e15.

  3. Andersen, J.B. and S.S. Thorgeirsson, Genetic profiling of intrahepatic cholangiocarcinoma. Curr Opin Gastroenterol, 2012. 28(3): p. 266-72.

    Article  CAS  Google Scholar 

  4. Xie, D., et al., Genetic profiling of intrahepatic cholangiocarcinoma and its clinical implication in targeted therapy. Am J Cancer Res, 2016. 6(3): p. 577-86.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, W., et al., Laparoscopic surgery and robotic surgery for hilar cholangiocarcinoma: an updated systematic review. ANZ J Surg, 2020.

  6. Mizuno, T., T. Ebata, and M. Nagino, Advanced hilar cholangiocarcinoma: An aggressive surgical approach for the treatment of advanced hilar cholangiocarcinoma: Perioperative management, extended procedures, and multidisciplinary approaches. Surg Oncol, 2020. 33: p. 201-206.

    Article  Google Scholar 

  7. Liu, S., et al., Wip1 is associated with tumorigenity and metastasis through MMP-2 in human intrahepatic cholangiocarcinoma. Oncotarget, 2017. 8(34): p. 56672-56683.

    Article  Google Scholar 

  8. Liu, S., et al., iNOS is associated with tumorigenicity as an independent prognosticator in human intrahepatic cholangiocarcinoma. Cancer Manag Res, 2019. 11: p. 8005-8022.

    Article  CAS  Google Scholar 

  9. Staub, J., et al., Unilateral versus bilateral hilar stents for the treatment of cholangiocarcinoma: a multicenter international study. Ann Gastroenterol, 2020. 33(2): p. 202-209.

    PubMed  PubMed Central  Google Scholar 

  10. Abdel Razek, A.A.K., Routine and Advanced Diffusion Imaging Modules of the Salivary Glands. Neuroimaging Clin N Am, 2018. 28(2): p. 245–254.

  11. Razek, A., Editorial for “Preliminary Assessment of Intravoxel Incoherent Motion Diffusion‐Weighted MRI ( IVIM‐DWI ) Metrics in Alzheimer's Disease”. Journal of Magnetic Resonance Imaging, 2020. 52.

  12. Mao, X., et al., Quantitative evaluation of intravoxel incoherent motion diffusion-weighted imaging (IVIM) for differential diagnosis and grading prediction of benign and malignant breast lesions. Medicine (Baltimore), 2018. 97(26): p. e11109.

    Article  Google Scholar 

  13. Ma, W., et al., Quantitative parameters of intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI): potential application in predicting pathological grades of pancreatic ductal adenocarcinoma. Quant Imaging Med Surg, 2018. 8(3): p. 301-310.

    Article  Google Scholar 

  14. Chow, A.M., et al., Liver fibrosis: An intravoxel incoherent motion (IVIM) study. Journal of Magnetic Resonance Imaging Jmri, 2012. 36(1): p. 159-167.

    Article  Google Scholar 

  15. Zhang, B., et al., Intravoxel Incoherent Motion MR Imaging for Staging of Hepatic Fibrosis. PLoS One, 2016. 11(1): p. e0147789.

    Article  Google Scholar 

  16. A, L., et al., Liver cirrhosis: intravoxel incoherent motion MR imaging——pilot study. Radiology, 2008. 249(3): p. 891.

  17. Patel, J., et al., Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. Journal of Magnetic Resonance Imaging Jmri, 2010. 31(3): p. 589-600.

    Article  Google Scholar 

  18. Shintaro Ichikawa, M.D., et al., Intravoxel incoherent motion imaging of focal hepatic lesions. Journal of Magnetic Resonance Imaging Jmri, 2013. 37(6): p. 1371-1376.

    Article  Google Scholar 

  19. Andreou, A., et al., Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol, 2013. 23(2): p. 428-434.

    Article  CAS  Google Scholar 

  20. Yoon, J.H., et al., Evaluation of hepatic focal lesions using diffusion-weighted MR imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived parameters. Journal of Magnetic Resonance Imaging, 2014. 39(2): p. 276–285.

    Article  Google Scholar 

  21. Xu, X. and X. Zhang, The Application of Intravoxel Incoherent Motion Diffusion-Weighted Imaging in the Diagnosis of Hilar Obstructive Jaundice. J Comput Assist Tomogr, 2019. 43(2): p. 228-234.

    Article  Google Scholar 

  22. Le Bihan, D., et al., Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology, 1988. 168(2): p. 497-505.

    Article  Google Scholar 

  23. Le Fur, M., et al., Toward Molecular Imaging of Intestinal Pathology. Inflamm Bowel Dis, 2020.

  24. Zamboni, G.A., et al., Optimum imaging of chronic pancreatitis. Abdom Radiol (NY), 2020. 45(5): p. 1410-1419.

    Article  CAS  Google Scholar 

  25. Liang, J., et al., Using IVIM-MRI and R2 Mapping to Differentiate Early Stage Liver Fibrosis in a Rat Model of Radiation-Induced Liver Fibrosis. Biomed Res Int, 2018. 2018: p. 4673814.

    PubMed  PubMed Central  Google Scholar 

  26. Shin, H.J., et al., Liver intravoxel incoherent motion diffusion-weighted imaging for the assessment of hepatic steatosis and fibrosis in children. World J Gastroenterol, 2018. 24(27): p. 3013-3020.

    Article  Google Scholar 

  27. Patella, F., et al., Quantification of heterogeneity to classify benign parotid tumors: a feasibility study on most frequent histotypes. Future Oncol, 2020. 16(12): p. 763-778.

    Article  CAS  Google Scholar 

  28. Bohara, M., et al., Histological Grade of Meningioma: Prediction by Intravoxel Incoherent Motion Histogram Parameters. Acad Radiol, 2020. 27(3): p. 342-353.

    Article  Google Scholar 

  29. Razek, A.A., A. Fathy, and T.A. Gawad, Correlation of apparent diffusion coefficient value with prognostic parameters of lung cancer. J Comput Assist Tomogr, 2011. 35(2): p. 248-52.

    Article  Google Scholar 

  30. Abdel Razek, A.A., et al., Correlation of apparent diffusion coefficient at 3T with prognostic parameters of retinoblastoma. AJNR Am J Neuroradiol, 2012. 33(5): p. 944-8.

    Article  CAS  Google Scholar 

  31. Wei, Y., et al., Intrahepatic cholangiocarcinoma in the setting of HBV-related cirrhosis: Differentiation with hepatocellular carcinoma by using Intravoxel incoherent motion diffusion-weighted MR imaging. Oncotarget, 2018. 9(8): p. 7975-7983.

    Article  Google Scholar 

  32. Jerjir, N., et al., Intravoxel incoherent motion and dynamic contrast-enhanced MRI for differentiation between hepatocellular adenoma and focal nodular hyperplasia. The British Journal of Radiology, 2017. 90: p. 20170007.

    Article  Google Scholar 

  33. Meng, M., et al., A novel approach to monitoring the efficacy of anti-tumor treatments in animal models: combining functional MRI and texture analysis. BMC Cancer, 2018. 18(1): p. 833.

    Article  Google Scholar 

  34. Zhu, S., et al., Esophageal carcinoma: Intravoxel incoherent motion diffusion-weighted MRI parameters and histopathological correlations. J Magn Reson Imaging, 2019. 49(1): p. 253-261.

    Article  Google Scholar 

  35. Xu, X., L. Li, and X.N. Zhang, Correlation analysis of preoperative magnetic resonance cholangiopancreatography and prognosis in hilar cholangiocarcinoma. Clin Invest Med, 2019. 42(4): p. E14-E21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Xu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

The study was approved by the Ethics Committee of the Institution of Tianjin Hospital of ITCWM, Nankai Hospital, and was conducted in accordance with the 1975 Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X. Diagnosis of hilar cholangiocarcinoma using intravoxel incoherent motion diffusion-weighted magnetic resonance imaging. Abdom Radiol 46, 3159–3167 (2021). https://doi.org/10.1007/s00261-021-02997-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-021-02997-x

Keywords

Navigation