Skip to main content

Advertisement

Log in

A radiomics nomogram for predicting transcatheter arterial chemoembolization refractoriness of hepatocellular carcinoma without extrahepatic metastasis or macrovascular invasion

  • Hepatobiliary
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Objective

A radiomics nomogram for pretreatment prediction of TACE refractoriness was developed and validated for hepatocellular carcinoma (HCC) without extrahepatic metastasis or macrovascular invasion.

Materials and methods

This study included 80 patients with HCC without extrahepatic metastasis or macrovascular involvement treated with TACE between July 2016 and November 2018. The datasets were divided into a training set (80%) and a test set (20%) for feature selection and tenfold cross-validation. Forty radiomic features were extracted from arterial-phase computed tomography (CT) using the Local Image Features Extraction software. The Lasso regression model was used for radiomics signature selection. The Lasso regression model was used for radiomics signature selection and the selected signatures were validated using the Mann–Whitney U-test. The radiomics nomogram was developed based on a multivariate logistic regression model incorporating the Rad-score, CT imaging factors, and clinical factors, and it was validated.

Results

The Rad-score, which consists of the Gray-Level Zone Length Matrix (GLZLM)—Long-Zone Low Gray-Level Emphasis (LZLGE) and GLZLM—Gray-Level Non-Uniformity (GLNU), T-stage, log α-fetoprotein (AFP), and bilobar distribution were significantly associated with TACE refractoriness (p < 0.05). Predictors in the radiomics nomogram were the Rad-score and T-stage (Rad-score + T-stage), Rad-score and bilobar distribution (Rad-score + bilobar distribution), or Rad-score and logAFP (Rad-score + logAFP). The multivariate logistic regression model showed a good predictive performance (Rad-score + T-stage, AUC, 0.95; Rad-score + bilobar distribution, AUC 0.91; and Rad-score + logAFP, AUC, 0.91).

Conclusion

The radiomics nomogram could be used for the pretreatment prediction of TACE refractoriness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bruix J, Sala M, Llovet JM. Chemoembolization for hepatocellular carcinoma. Gastroenterology 2004; 127:S179-S188

    Article  CAS  Google Scholar 

  2. Villanueva A. Hepatocellular Carcinoma. N Engl J Med 2019; 380:1450-1462

    Article  CAS  Google Scholar 

  3. Han K, Kim JH. Transarterial chemoembolization in hepatocellular carcinoma treatment: Barcelona clinic liver cancer staging system. World journal of gastroenterology: WJG 2015; 21:10327

    Article  CAS  Google Scholar 

  4. Llovet JM, Bruix JJH. Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. 2003; 37:429-442

    CAS  Google Scholar 

  5. Raoul J-L, Sangro B, Forner A, et al. Evolving strategies for the management of intermediate-stage hepatocellular carcinoma: available evidence and expert opinion on the use of transarterial chemoembolization. 2011; 37:212-220

    Google Scholar 

  6. Lencioni R, de Baere T, Soulen MC, Rilling WS, Geschwind JF. Lipiodol transarterial chemoembolization for hepatocellular carcinoma: A systematic review of efficacy and safety data. Hepatology 2016; 64:106-116

    Article  CAS  Google Scholar 

  7. Lanza E, Donadon M, Poretti D, et al. Transarterial Therapies for Hepatocellular Carcinoma. Liver Cancer 2016; 6:27-33

    Article  Google Scholar 

  8. Garwood ER, Fidelman N, Hoch SE, Kerlan RK, Jr., Yao FY. Morbidity and mortality following transarterial liver chemoembolization in patients with hepatocellular carcinoma and synthetic hepatic dysfunction. Liver Transpl 2013; 19:164-173

    Article  Google Scholar 

  9. Tu J, Jia Z, Ying X, et al. The incidence and outcome of major complication following conventional TAE/TACE for hepatocellular carcinoma. 2016; 95

  10. Hucke F, Pinter M, Graziadei I, et al. How to STATE suitability and START transarterial chemoembolization in patients with intermediate stage hepatocellular carcinoma. 2014; 61:1287-1296

    Google Scholar 

  11. Ha Y, Han S, Shim JH, et al. Nomograms for predicting outcomes after chemoembolization in patients with nonmetastatic hepatocellular carcinoma. Journal of Vascular and Interventional Radiology 2015; 26:1093-1101. e1091

    Google Scholar 

  12. Yamashita T, Kaneko SJHr. Treatment strategies for hepatocellular carcinoma in Japan. 2013; 43:44-50

    CAS  Google Scholar 

  13. Kudo M, Izumi N, Kokudo N, et al. Management of hepatocellular carcinoma in Japan: Consensus-Based Clinical Practice Guidelines proposed by the Japan Society of Hepatology (JSH) 2010 updated version. 2011; 29:339-364

  14. Kim HY, Park JW, Joo J, et al. Severity and timing of progression predict refractoriness to transarterial chemoembolization in hepatocellular carcinoma. 2012; 27:1051-1056

    Google Scholar 

  15. Morshid A, Elsayes KM, Khalaf AM, et al. A machine learning model to predict hepatocellular carcinoma response to transcatheter arterial chemoembolization. Radiology: Artificial Intelligence 2019; 1:e180021

  16. Park HJ, Kim JH, Choi S-y, et al. Prediction of therapeutic response of hepatocellular carcinoma to transcatheter arterial chemoembolization based on pretherapeutic dynamic CT and textural findings. American Journal of Roentgenology 2017; 209:W211-W220

  17. Zhang X, Wang K, Wang M, et al. Transarterial chemoembolization (TACE) combined with sorafenib versus TACE for hepatocellular carcinoma with portal vein tumor thrombus: a systematic review and meta-analysis. Oncotarget 2017; 8:29416

    Article  Google Scholar 

  18. Galle PR, Forner A, Llovet JM, et al. EASL clinical practice guidelines: management of hepatocellular carcinoma. Journal of hepatology 2018;

  19. Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018; 67:358-380

    Article  Google Scholar 

  20. Iannaccone R, Piacentini F, Murakami T, et al. Hepatocellular carcinoma in patients with nonalcoholic fatty liver disease: helical CT and MR imaging findings with clinical-pathologic comparison. 2007; 243:422-430

    Google Scholar 

  21. Yoshizumi T, Nakamura T, Yamane M, et al. Abdominal fat: standardized technique for measurement at CT. 1999; 211:283-286

    CAS  Google Scholar 

  22. Lee JH, Lee JM, Kim SJ, et al. Enhancement patterns of hepatocellular carcinomas on multiphasicmultidetector row CT: comparison with pathological differentiation. Br J Radiol 2012; 85:e573-e583

    Article  CAS  Google Scholar 

  23. Edge SB, Edge SB. AJCC Cancer Staging Manual 8th Ed: Springer, 2017

  24. Nioche C, Orlhac F, Boughdad S, et al. LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer research 2018; 78:4786-4789

    Article  CAS  Google Scholar 

  25. Orlhac F NC, Buvat I. Texture — User Guide Local Image Features Extraction. 2018.

  26. Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology 2011; 53:1020-1022

    Article  Google Scholar 

  27. Sheen H, Kim W, Byun BH, et al. Metastasis risk prediction model in osteosarcoma using metabolic imaging phenotypes: A multivariable radiomics model. PLoS One 2019; 14:e0225242

    Article  CAS  Google Scholar 

  28. Sauerbrei W, Royston P, Binder H. Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Statistics in Medicine 2007; 26:5512-5528

    Article  Google Scholar 

  29. Guo D, Gu D, Wang H, et al. Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation. European Journal of Radiology 2019; 117:33-40

    Article  Google Scholar 

  30. Zhou Y, He L, Huang Y, et al. CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma. Abdominal radiology (New York) 2017; 42:1695-1704

    Article  Google Scholar 

  31. Bruix J, Reig M, Sherman M. Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology 2016; 150:835-853

    Article  Google Scholar 

  32. Venkatesh SK, Chandan V, Roberts LR. Liver masses: a clinical, radiologic, and pathologic perspective. Clinical Gastroenterology and Hepatology 2014; 12:1414-1429

    Article  Google Scholar 

  33. Wang Q, Xia D, Bai W, et al. Development of a prognostic score for recommended TACE candidates with hepatocellular carcinoma: A multicentre observational study. Journal of hepatology 2019; 70:893-903

    Article  Google Scholar 

  34. Kim J, Choi SJ, Lee SH, Lee HY, Park H. Predicting Survival Using Pretreatment CT for Patients With Hepatocellular Carcinoma Treated With Transarterial Chemoembolization: Comparison of Models Using Radiomics. AJR Am J Roentgenol 2018; 211:1026-1034

    Article  Google Scholar 

  35. Cappelli A, Cucchetti A, Cabibbo G, et al. Refining prognosis after trans‐arterial chemo‐embolization for hepatocellular carcinoma. Liver International 2016; 36:729-736

    Article  CAS  Google Scholar 

  36. Mulé S, Galletto Pregliasco A, Tenenhaus A, et al. Multiphase Liver MRI for Identifying the Macrotrabecular-Massive Subtype of Hepatocellular Carcinoma. Radiology 2020; 295:562-571

    Article  Google Scholar 

  37. Kamarajah SK, Frankel TL, Sonnenday C, Cho CS, Nathan HJJoso. Critical evaluation of the American Joint Commission on Cancer (AJCC) staging system for patients with hepatocellular carcinoma (HCC): a Surveillance, Epidemiology, End Results (SEER) analysis. 2018; 117:644-650

  38. Meyer M, Ronald J, Vernuccio F, et al. Reproducibility of CT Radiomic Features within the Same Patient: Influence of Radiation Dose and CT Reconstruction Settings. Radiology 2019; 293:583-591

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ewha Womans University Research Grant of 2019 and by National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (Grant No. 2019R1F1A1060190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Sil Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 780 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheen, H., Kim, J.S., Lee, J.K. et al. A radiomics nomogram for predicting transcatheter arterial chemoembolization refractoriness of hepatocellular carcinoma without extrahepatic metastasis or macrovascular invasion. Abdom Radiol 46, 2839–2849 (2021). https://doi.org/10.1007/s00261-020-02884-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-020-02884-x

Keywords

Navigation