Skip to main content
Log in

A novel method for estimating the urine drainage time from the renal collecting system

  • Special Section: Quantitative Imaging
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

Partial obstruction of the upper urinary tract is a common urological pathology that leads to progressive atrophy and dysfunction of the kidney. Most methods for evaluating the urine drainage rate, to assess the severity of partial obstruction, involve injection of markers into the blood stream and therefore the filtration rate from the blood effects the drainage rate. This study presents a novel method for assessing the drainage rate from the upper urinary tract by analyzing sequential fluoroscopic images from a routine nephrostogram, in which contrast material is introduced directly into the renal collecting system.

Methods

Fluoroscopic images from 36 nephrostograms, following percutaneous nephrolithotomy, were retrospectively evaluated, 19 with a dilated renal pelvis. A radiological model for calculating the radiopacity of the renal pelvis, which reflects the amount of contrast material in each sequential image, was developed. Using this model, an algorithm was designed for generating a drainage curve and calculating the “drainage time” t1/2 in which half of the contrast material has drained from the renal pelvis.

Results

Analysis of images of a step-wedge phantom made of an increasing number of contrast material layers showed that the calculated radiopacity of each step was proportional to the amount of contrast material, independent of the background attenuation. Analysis of the nephrostograms showed that the drainage curves highly fitted an exponential function (R = 0.961), with a significantly higher t1/2 for dilated cases.

Conclusion

The developed method may be used for a quantitative and accurate estimation of the urine drainage rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Elder JS (2016) Obstruction of the urinary tract. In: Kliegman RM, Stanton BF, Schor NF, St Geme JW, Behrman RE (ed) Nelson textbook of Pediatrics, 20th edn. Elsevier, New Delhi, pp 2567-2575

    Google Scholar 

  2. Hall J, Linton KD (2008) Obstruction of the upper and lower urinary tract. Surgery 26:197-202. https://doi.org/10.1016/j.mpsur.2008.03.007.

    Article  Google Scholar 

  3. Choong KKL, Gruenewald SM, Hodson EM, Antico VF, Farlow DC, Cohen RC (1992) Volume expanded diuretic renography in the postnatal assessment of suspected uretero-pelvic junction obstruction. J Nucl Med 33:2094-2098.

    CAS  PubMed  Google Scholar 

  4. Walser M, Davidson DG, Orloff J (1955) The renal clearance of alkali-stable inulin. J Clin invest 34:1520-1523.

    Article  CAS  Google Scholar 

  5. Bauer JH, Brooks CS, Burch RN (1982) Clinical appraisal of creatinine clearance as a measurement of glomerular filtration rate. American Journal of Kidney Diseases 2:337-346. https://doi.org/10.1016/S0272-6386(82)80091-7

    Article  CAS  PubMed  Google Scholar 

  6. Gates, GF (1982) Glomerulr filtration rate: estimation from fractional renal accumulation of 99mTc-DTPA (stannous). Am J Roentgenol 138:565-570. https://doi.org/10.2214/ajr.138.3.565

    Article  CAS  Google Scholar 

  7. Itoh K (2001) 99mTc-MAG3: review of pharmacokinetics, clinical application to renal diseases and quantification of renal function. Ann Nucl Med 15:179-190. https://doi.org/10.1007/BF02987829

    Article  CAS  PubMed  Google Scholar 

  8. You S, Ma X, Zhang C, Li Q, Shi W, Zhang J, Yuan X (2018). Determination of single-kidney glomerular filtration rate (GFR) with CT urography versus renal dynamic imaging Gates method. Eur radiol 28:1077-1084. https://doi.org/10.1007/s00330-017-5061-z

    Article  PubMed  Google Scholar 

  9. Yuan X, Zhang J, Tang K, Quan C, Tian Y et al (2017) Determination of glomerular filtration rate with CT measurement of renal clearance of iodinated contrast material versus 99mTc-DTPA dynamic imaging “gates” method: A validation study in asymmetrical renal disease. Radiol. 282:552-560. https://doi.org/10.1148/radiol.2016160425

    Article  Google Scholar 

  10. Sivakumar VN, Indiran V, Sathyanathan, BP (2018) Dynamic MRI and isotope renogram in the functional evaluation of pelviureteric junction obstruction: A comparative study. Turk J Urol 44:45-50. https://doi.org/10.5152/tud.2018.08365

    Article  PubMed  PubMed Central  Google Scholar 

  11. El‐Nahas AR, Abou El‐Ghar ME, Refae HF, Gad HM, El‐Diasty TA (2007) Magnetic resonance imaging in the evaluation of pelvi‐ureteric junction obstruction: an all‐in‐one approach. BJU Int 99:641-645. https://doi.org/10.1111/j.1464-410X.2006.06673.x

    Article  PubMed  Google Scholar 

  12. Schuhmann-Giampieri G, Krestin G (1991). Pharmacokinetics of Gd-DTPA in patients with chronic renal failure. Invest Radiol 26:975–979. https://doi.org/10.1097/00004424-199111000-00009

    Article  CAS  PubMed  Google Scholar 

  13. Kavoussi LR., Meretyk S, Dierks SM, Bigg SW, Gup DI, Manley CB et al (1991) Endopyelotomy for secondary ureteropelvic junction obstruction in children. J Urol 145:345-349. https://doi.org/10.1016/S0022-5347(17)38335-0

    Article  CAS  PubMed  Google Scholar 

  14. Rassweiler-Seyfried MC, Rassweiler JJ, Weiss C, Müller M, Meinzer HP, Maier-Hein L, Klein JT (2020) iPad-assisted percutaneous nephrolithotomy (PCNL): a matched pair analysis compared to standard PCNL. World J Urol 38:447-453. https://doi.org/10.1007/s00345-019-02801-y

    Article  PubMed  Google Scholar 

  15. Gao XS, Liao BH, Chen YT, Feng SJ, Gao R, Luo DY et al (2017) Different tract sizes of miniaturized percutaneous nephrolithotomy versus retrograde intrarenal surgery: a systematic review and meta-analysis. J Endourol 31:1101-1110. https://doi.org/10.1089/end.2017.0547

    Article  PubMed  Google Scholar 

  16. Gupta DK, Chandrasekharam VVSS, Srinivas M, Bajpai, M (2001) Percutaneous nephrostomy in children with ureteropelvic junction obstruction and poor renal function. Urol 57:547-550. https://doi.org/10.1016/s0090-4295(00)01046-3

    Article  CAS  PubMed  Google Scholar 

  17. ElSheemy MS, Shouman AM, Shoukry AI, ElShenoufy A, Aboulela W et al (2015) Ureteric stents vs percutaneous nephrostomy for initial urinary drainage in children with obstructive anuria and acute renal failure due to ureteric calculi: a prospective, randomised study. BJU Int 115:473-479. https://doi.org/10.1111/bju.12768

    Article  PubMed  Google Scholar 

  18. Peer A, Strauss S, Witz E, Manor H, Eidelman A (1992) Use of percutaneous nephrostomy in hydronephrosis of pregnancy. Eur J Radiol 15:220-223. https://doi.org/10.1016/0720-048X(92)90111-L

    Article  CAS  PubMed  Google Scholar 

  19. Şimşir A, Kizilay F, Semerci B (2018) Comparison of percutaneous nephrostomy and double J stent in symptomatic pregnancy hydronephrosis treatment. Turk J Med Sci 48:405-411. https://doi.org/10.3906/sag-1711-5

    Article  PubMed  Google Scholar 

  20. Florido C, Herren JL, Pandhi MB, Niemeyer MM (2020) Emergent Percutaneous Nephrostomy for Pyonephrosis: A Primer for the On-Call Interventional Radiologist. Semin interv Radiol 37:74-84. https://doi.org/10.1055/s-0039-3401842

    Article  Google Scholar 

  21. Rodrigo Zanon J, Cardoso MS, Mimica MJ, Faria EF, Baiocchi G, Guerreiro Fregnani JHT (2020) Retrospective Analysis of the Role of Antibiotic Prophylaxis in the Placement and Replacement of Percutaneous Nephrostomy Catheters in Patients with Malignant Ureteral Obstruction. J. Palliat Med 23:686-691. https://doi.org/10.1089/jpm.2019.0289

    Article  PubMed  Google Scholar 

  22. Webb JAW (1990) Ultrasonography in the diagnosis of renal obstruction. BMJ: Br Med J, 301:944. https://doi.org/10.1136/bmj.301.6758.944

    Article  CAS  Google Scholar 

  23. Ghani KR, Andonian S, Bultitude M, Desai M, Giusti G, Okhunov Z et al (2016) Percutaneous nephrolithotomy: update, trends, and future directions. Eur Urol 70:382-396.

    Article  Google Scholar 

  24. Özdedeli K, Çek M (2012) Residual fragments after percutaneous nephrolithotomy. Balk Med J 29:230-235. https://doi.org/10.5152/balkanmedj.2012.082

    Article  CAS  Google Scholar 

  25. Kessler RM, Quevedo H, Lankau CA, Ramirez-Seijas F, Cepero-Akselrad A, Altman DH, Kessler KM (1993) Obstructive vs nonobstructive dilatation of the renal collecting system in children: distinction with duplex sonography. AJR: Am J Roentgenol 160:353-357. https://doi.org/10.2214/ajr.160.2.8424349

    Article  CAS  Google Scholar 

  26. Bushberg JT, Seibert JA, Leidholdt EMJ, Boone JM (2011) Introduction of radiation with matter. In: Bushberg JT (ed) The essential physics of medical imaging, 3th edn. Williams & Wilkins, Boltimore, pp 28-30

    Google Scholar 

  27. Christensen EE, Curry TS, Dowdey JE, Murry RC (1984) Attenuation. In: Christensen’s introduction to the physics of diagnostic radiology, 3th edn. Lea & Febiger, Philadelphia, pp 60-76

    Google Scholar 

  28. Hubbell, JH Seltzer SM (2004), Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (version 1.4). National Institute of Standards and Technology, Gaithersburg, MD. https://dx.doi.org/10.18434/T4D01F

  29. Otsu N (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst Man Cyber 9:62-66. https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  30. Eterovic D, Dujic Z (1994) Theoretical considerations on the validity of the Stewart-Hamilton principle in measuring cycle-averaged flows via histogram of indicator in the pulsating compartment. Med Phys 21:293-298. https://doi.org/10.1118/1.597238

    Article  CAS  PubMed  Google Scholar 

  31. Molloi S, Bednarz G, Tang J, Zhou Y, Mathur T (1998) Absolute volumetric coronary blood flow measurement with digital subtraction angiography. Int J Card Imaging 14:137-145. https://doi.org/10.1023/a:1006059709539

    Article  CAS  PubMed  Google Scholar 

  32. Gotch FA (1998) The current place of urea kinetic modelling with respect to different dialysis modalities. Nephrol Dial Transplant 13:10-14. https://doi.org/10.1093/ndt/13.suppl_6.10

    Article  CAS  PubMed  Google Scholar 

  33. Daneshi M, Yusuf GT, Fang C, Sellars ME, Huang DY, Sidhu, PS (2019) Contrast-enhanced ultrasound (CEUS) nephrostogram: utility and accuracy as an alternative to fluoroscopic imaging of the urinary tract. Clin Radiol 74:167-169. https://doi.org/10.1016/j.crad.2018.10.004

    Article  PubMed  Google Scholar 

  34. Shpilfoygel SD, Close RA, Valentino DJ, Duckwiler GR (2000) X-ray videodensitometric methods for blood flow velocity measurement: a critical review of literature. Med Phys 27:2008-2023. https://doi.org/10.1118/1.1288669

    Article  CAS  PubMed  Google Scholar 

  35. Bao J, Manatunga A, Binongo JNG, Taylor AT (2011) Key variables for interpreting 99mtc-Mercaptoacetyltriglycine diuretic scans: development and validation of a predictive model. AJR: Am J Roentgenol 197:325-333. https://doi.org/10.2214/AJR.10.590

    Article  PubMed  PubMed Central  Google Scholar 

  36. Esteves FP, Taylor A, Manatunga A, Folks RD, Krishnan M, Garcia EV (2006) 99mTc-MAG3 Renography: Normal Values for MAG3 Clearance and Curve Parameters, Excretory Parameters, and Residual Urine Volume. AJR: Am J Roentgenol 187:W610-W617. https://doi.org/10.2214/AJR.05.1550

    Article  Google Scholar 

  37. Sharifiaghdas F, Mirzaeib M, Daneshpajoohb A, Abbaszadeh S (2019) Minimally invasive open dismembered pyeloplasty technique: Miniature incision, muscle-splitting dissection, and nopelvis reduction in children. Asian J Urol 6:290-293. https://doi.org/10.1016/j.ajur.2018.08.001

    Article  PubMed  Google Scholar 

  38. von Rundstedt FC, Scovell JM, Bian SX, Lee D, Mayer WA, Link RE (2017) Percent of tracer clearance at 40 min in MAG3 renal scans is more sensitive than T1/2 for symptomatic UPJ obstruction, Urol 103:245-250. https://doi.org/10.1016/j.urology.2016.11.049

    Article  Google Scholar 

Download references

Funding

No funds, Grants, or other support was received from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Prof. MD provided the nephrostograms and Dr. RL analyzed them clinically. The radiological model was developed by TY, IL, and VN. The step-wedge phantom was developed by VN, OG, and IL. TY and OG developed the algorithm, performed the measurements on the phantom and processed the nephrostogram images. The first draft of the manuscript was written by IL, TY, and RL and all the other authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Talia Yeshua.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical approval

This research study was conducted retrospectively from data obtained for clinical purposes. We consulted extensively with the IRB of Hadassah Medical Center who determined that our study did not need ethical approval. An IRB official waiver of ethical approval was granted from the IRB of Hadassah Medical Center.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeshua, T., Gleisner, O., Lederman, R. et al. A novel method for estimating the urine drainage time from the renal collecting system. Abdom Radiol 46, 2647–2655 (2021). https://doi.org/10.1007/s00261-020-02880-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-020-02880-1

Keywords

Navigation