Abstract
Purpose
To investigate the renal microstructure changes and hypoxia changes in type 2 diabetic patients and the relationship between them and glucose using both diffusion-weighted imaging (DWI) and blood oxygenation level-dependent magnetic resonance imaging (BOLD MRI).
Methods
After measuring morning fasting blood glucose, DWI and BOLD MRI were performed in 57 patients with type 2 diabetes mellitus (DM group) and 14 healthy volunteers (NC group). According to the fasting blood glucose levels, diabetic patients were divided into a normoglycemic diabetes group (group A), a less hyperglycemic diabetes group (group B) and a more hyperglycemic diabetes group (group C). The renal parenchymal apparent diffusion coefficient (ADC), renal cortical R2* (CR2*), and medullary R2* (MR2*) were measured, and the R2* ratio between the medulla and cortex (MCR) was calculated. To test for differences in ADC, R2*, and MCR among the four groups, the data were analyzed by separate one-way ANOVAs. The correlations between ADC, R2*, and MCR and the clinical index of renal function were analyzed.
Results
Groups B and C had significantly lower ADC values in the renal parenchyma (P = 0.048, 0.002) and significantly higher MR2* and MCR values (P < 0.000, P = 0.001, 0.001, and 0.005, respectively) than the NC group. ADC was negatively correlated with glucose, and MR2*, MCR and glucose showed a weak positive correlation.
Conclusion
DWI and BOLD may indirectly and qualitatively reflect the kidney microstructure status and hypoxia level of diabetic patients at different blood glucose levels to a certain extent, and possibly guide the clinical treatment of diabetic patients with different blood glucose levels.
Similar content being viewed by others
References
Ma RCW (2018) Epidemiology of diabetes and diabetic complications in China. Diabetologia 61(6):1249-1260. https://doi.org/10.1007/s00125-018-4557-7
Reutens AT, Atkins RC (2011) Epidemiology of Diabetic Nephropathy. Contrib Nephrol 170: 1-7. https://doi.org/10.1159/000324934
Warren AM, Søren T. Knudsen, Cooper ME (2019) Diabetic nephropathy: an insight into molecular mechanisms and emerging therapies. Expert Opin Ther Targets 23(7):579-591. https://doi.org/10.1080/14728222.2019.1624721
Zhang L, Long J, Jiang W, Shi Y, He X, Zhou Z, Li Y, Yeung RO, Wang J, Matsushita K, Coresh J, Zhao MH, Wang H (2016) Trends in chronic kidney disease in China. N Engl J Med 375(9):905-906. https://doi.org/10.1056/NEJMc1602469
Freedman BI, Bostrom M, Daeihagh P, Bowden DW (2007) Genetic Factors in Diabetic Nephropathy. Clin J Am Soc Nephrol 2(6):1306-1316. https://doi.org/10.2215/CJN.02560607
Rendra E, Riabov V, Mossel DM, Sevastyanova T, Harmsen MC, Kzhyshkowska J (2019) Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology 224(2):242-253. https://doi.org/10.1016/j.imbio.2018.11.010
Palm F, Cederberg J, Hansell P, Liss P, Carlsson PO (2003) Reactiv oxygen species cause diabetes-induced decrease in renal oxygen tension. Diabetologia 46(8):1153-1160. https://doi.org/10.1007/s00125-003-1155-z
Peng XG, Bai YY, Fang F, Wang XY, Mao H, Teng GJ, Ju S (2013) Renal lipids and oxygenation in diabetic mice: noninvasive quantification with MR Imaging. Radiology 269 (3): 748-757. https://doi.org/10.1148/radiol.13122860
Friederich-Persson M, Thörn E, Hansell P, Nangaku M, Levin M, Palm F (2013) Kidney Hypoxia, Attributable to increased oxygen consumption, induces nephropathy independently of hyperglycemia and oxidative stress. Hypertension 62(5):914-919. https://doi.org/10.1161/HYPERTENSIONAHA.113.01425
Heyman SN, Khamaisi M, Rosen S, Rosenberger C (2008) Renal parenchymal hypoxia, hypoxia response and the progression of chronic kidney disease. Am J Nephrol 28(6):998–1006. 62(5):914–919.https://doi.org/10.1159/000146075
Schiffer TA, Friederich-Persson M (2017) Mitochondrial reactive oxygen species and kidney hypoxia in the development of diabetic nephropathy. Front Physiol Apr 11; 8:211. https://doi.org/10.3389/fphys.2017.00211
Caroli A, Schneider M, Friedli I, Ljimani A, De Seigneux S, Boor P, Gullapudi L, Kazmi I, Mendichovszky IA, Notohamiprodjo M, Selby NM, Thoeny HC, Grenier N, Vallée JP. Nephrol Dial Transplant (2018) Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: a systematic review and statement paper. Nephrol Dial Transplant 33(suppl_2): ii29-ii40. https://doi.org/10.1093/ndt/gfy163
Pruijm M, Mendichovszky IA, Liss P, Van der Niepen P, Textor SC, Lerman LO, Krediet CTP, Caroli A, Burnier M, Prasad PV (2018) Renal blood oxygenation level-dependent magnetic resonance imaging to measure renal tissue oxygenation: a statement paper and systematic review. Nephrol Dial Transplant 33(suppl_2): ii22-ii28.https://doi.org/10.1093/ndt/gfy243
Selby NM, Blankestijn PJ, Boor P, Combe C, Eckardt KU, Eikefjord E, Garcia-Fernandez N, Golay X, Gordon I, Grenier N, Hockings PD, Jensen JD, Joles JA, Kalra PA, Krämer BK, Mark PB, Mendichovszky IA, Nikolic O, Odudu A, Ong ACM, Ortiz A, Pruijm M, Remuzzi G, Rørvik J, de Seigneux S, Simms RJ, Slatinska J, Summers P, Taal MW, Thoeny HC, Vallée JP, Wolf M, Caroli A, Sourbron S (2018) Magnetic resonance imaging biomarkers for chronic kidney disease: a position paper from the European Cooperation in Science and Technology Action PARENCHIMA. Nephrol Dial Transplant 33(suppl_2): ii4-ii14. https://doi.org/10.1093/ndt/gfy152
Ries M, Basseau F, Tyndal B, Jones R, Deminière C, Catargi B, Combe C, Moonen CW, Grenier N (2003) Renal diffusion and BOLD MRI in experimental diabetic nephropathy. J Magn Reson Imaging 17(1): 104-113. https://doi.org/10.1002/jmri.10224
Inoue T, Kozawa E, Okada H, Inukai K, Watanabe S, Kikuta T, Watanabe Y, Takenaka T, Katayama S, Tanaka J, Suzuki H (2011) Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J Am Soc Nephrol 22(8): 1429-1434. https://doi.org/10.1681/ASN.2010111143
Pruijm M, Hofmann L, Zanchi A, Maillard M, Forni V, Muller ME, Wuerzner G, Vogt B, Stuber M, Burnier M (2013) Blockade of the renin–angiotensin system and renal tissue oxygenation as measured with BOLD-MRI in patients with type 2 diabetes. Diabetes Res Clin Pract 99(2): 136-144. https://doi.org/10.1016/j.diabres.2012.11.004
Hofmann L, Simon-Zoula S, Nowak A, Giger A, Vock P, Boesch C, Frey FJ, Vogt B (2006) BOLD-MRI for the assessment of renal oxygenation in humans: acute effect of nephrotoxic xenobiotics. Kidney Int 70(1): 144-150. https://doi.org/10.1038/sj.ki.5000418
Thoeny HC, Kessler TM, Simon-Zoula S, De Keyzer F, Mohaupt M, Studer UE, Vermathen P (2008) Renal oxygenation changes during acute unilateral ureteral obstruction: assessment with blood oxygen level dependent MR imaging—initial experience. Radiology 47(3):754. https://doi.org/10.1148/radiol.2473070877
Hueper K, Hartung D, Gutberlet M, Gueler F, Sann H, Husen B, Wacker F, Reiche D (2013) Assessment of impaired vascular reactivity in a rat model of diabetic nephropathy: effect of nitric oxide synthesis inhibition on intrarenal diffusion and oxygenation measured by magnetic resonance imaging. Am J Physiol Renal Physiol 305(10): F1428-F1435. https://doi.org/10.1152/ajprenal.00123.2013
Lu L, Sedor JR, Gulani V, Schelling JR, O'Brien A, Flask CA, MacRae Dell K (2011) Use of Diffusion Tensor MRI to Identify Early Changes in Diabetic Nephropathy. Am J Nephrol. 34(5):476-482. https://doi.org/10.1159/000333044
Cakmak P, Yağcı AB, Dursun B, Herek D, Fenkçi SM (2014) Renal diffusion-weighted imaging in diabetic nephropathy: correlation with clinical stages of disease. Diagn Interv Radiol 20(5): 374-378. https://doi.org/10.5152/dir.2014.13513
Li ZC, Cai YZ, Tang ZG, Zuo PL, Liu RB, Liu F (2018) Lipo-prostaglandin E1 improves renal hypoxia evaluated by BOLD-MRI in patients with diabetic kidney disease. Clin Imaging 50:239-242. https://doi.org/10.1016/j.clinimag.2018.04.015
Feng YZ, Ye YJ, Cheng ZY, Hu JJ, Zhang CB, Qian L, Lu XH, Cai XR (2020) Non-invasive assessment of early stage diabetic nephropathy by DTI and BOLD MRI. Br J Radiol 93(1105): 20190562. https://doi.org/10.1259/bjr.20190562
Yin WJ, Liu F, Li XM, Yang L, Zhao S, Huang ZX, Huang YQ, Liu RB (2012) Noninvasive evaluation of renal oxygenation in diabetic nephropathy by BOLD-MRI. Eur J Radiol 81(7):1426-1431. https://doi.org/10.1016/j.ejrad.2011.03.045
Vexler VS, Roberts TP, Rosenau W (1996) Early detection of acute tubular injury with diffusion-weighted magnetic resonance imaging in a rat model of myohemoglobinuric acute renal failure. Ren Fail 18 (1):41-57. https://doi.org/10.3109/08860229609052773
Wang Y, Zhang H, Zhang R, Zhao Z, Xu Z, Wang L, Liu R, Gao F (2017) Investigation of aquaporins and apparent diffusion coefficient from ultra-high b- values in a rat model of diabetic nephropathy. ang RZ, et al. Eur Radiol Exp 1 (1): 13. https://doi.org/10.1186/s41747-017-0016-3
Caramori ML, Fioretto P, Mauer M (2003) Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients an indicator of more advanced glomerular lesions. Diabetes 52 (4):1036-1040. https://doi.org/10.2337/diabetes.52.4.1036
Luo B, Wen S, Chen YC, Cui Y, Gao FB, Yao YY, Ju SH, Teng GJ (2015) Lox-1-targeted iron oxide nanoparticles detect early diabetic nephropathy in db/db Mice. Mol Imaging Biol 17(5): 652-660. https://doi.org/10.1007/s11307-015-0829-5
Xiao L, Zhu X, Yang S, Liu F, Zhou Z, Zhan M, Xie P, Zhang D, Li J, Song P, Kanwar YS, Sun L (2014) Rap1 ameliorates renal tubular injury in diabetic nephropathy. Diabetes 63 (4):1366-1380. https://doi.org/10.2337/db13-1412
Yamashita Y, Tang Y, Takahashi M (1998) Ultrafast MR imaging of the abdomen: echo planar imaging and diffusion-weighted imaging. J Magn Reson Imaging 8(2):367-374. https://doi.org/10.1002/jmri.1880080216
Hueper K, Hartung D, Gutberlet M, Gueler F, Sann H, Husen B, Wacker F, Reiche D (2012) Magnetic resonance diffusion tensor imaging for evaluation of histopathological changes in a rat model of diabetic nephropathy. Invest Radiol 47(7):430-437. https://doi.org/10.1097/RLI.0b013e31824f272d
Chen X, Xiao W, Li X, He J, Huang X, Tan Y (2014) In vivo evaluation of renal function using diffusion weighted imaging and diffusion tensor imaging in type 2 diabetics with normoalbuminuria versus microalbuminuria. Front Med 8(4): 471-476. https://doi.org/10.1007/s11684-014-0365-8
Baines A, Ho P (2002) Glucose stimulates O2 consumption, NOS, and Na/H exchange in diabetic rat proximal tubules. Am J Physiol Renal Physiol 283(2): F286-F293. https://doi.org/10.1152/ajprenal.00330.2001
Palm F, Fasching A, Hansell P, Källskog O (2010) Nitric oxide originating from NOS1 controls oxygen utilization and electrolyte transport efficiency in the diabetic kidney. Am J Physiol Renal Physiol 298(2): F416-F420. https://doi.org/10.1152/ajprenal.00229.2009
Palm, F (2006) Intrarenal Oxygen in diabetes and a possible link to diabetic nephropathy. Clin Exp Pharmacol Physiol 33(10): 997-1001. https://doi.org/10.1111/j.1440-1681.2006.04473.x
Magri CJ, Fava S (2009) The role of tubular injury in diabetic nephropathy. Eur J Intern Med 20(6): 551-555. https://doi.org/10.1016/j.ejim.2008.12.012
Hansell P, Welch WJ, Blantz RC, Palm F (2013) Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension. Clin Exp Pharmacol Physiol 40(2): 123-137. https://doi.org/10.1111/1440-1681.12034
Pohlmann A, Arakelyan K, Hentschel J, Cantow K, Flemming B, Ladwig M, Waiczies S, Seeliger E, Niendorf T (2014) Detailing the relation between renal T2* and renal tissue pO2 using an integrated approach of parametric magnetic resonance imaging and invasive physiological measurements. Invest Radiol 49 (8): 547-560. https://doi.org/10.1097/RLI.0000000000000054
Wang ZJ, Kumar R, Banerjee S, Hsu CY (2011) Blood oxygen level-dependent (BOLD) MRI of diabetic nephropathy: Preliminary experience. J Magn Reson Imaging 33(3): 655-660. https://doi.org/10.1002/jmri.22501
Niendorf T, Pohlmann A, Arakelyan K, Flemming B, Cantow K, Hentschel J, Grosenick D, Ladwig M, Reimann H, Klix S, Waiczies S, Seeliger E (2015) How bold is blood oxygenation level-dependent (BOLD) magnetic resonance imaging of the kidney? Opportunities, challenges and future directions. Acta Physiol (Oxf) 13(1):19-38. https://doi.org/10.1111/apha.12393
Wang Q, Guo C, Zhang L, Zhang R, Wang Z, Xu Y, Xiao W (2018) BOLD MRI to evaluate early development of renal injury in a rat model of diabetes. J Int Med Res 46(4): 1391-1403. https://doi.org/10.1177/0300060517743826
Ding J, Chen J, Jiang Z, Zhou H, Di J, Xing S, Xing W (2016) Is low b-factors-based apparent diffusion coefficient helpful in assessing renal dysfunction? Radiol Med 121 (1):6-11. https://doi.org/10.1007/s11547-015-0577-2
Ljimani A, Caroli A, Laustsen C, Francis S, Mendichovszky IA, Bane O, Nery F, Sharma K, Pohlmann A, Dekkers IA, Vallee JP, Derlin K, Notohamiprodjo M, Lim RP, Palmucci S, Serai SD, Periquito J, Wang ZJ, Froeling M, Thoeny HC, Prasad P, Schneider M, Niendorf T, Pullens P, Sourbron S, Sigmund EE (2020) Consensus-based technical recommendations for clinical translation of renal diffusion-weighted MRI. MAGMA 33(1):177-195. https://doi.org/10.1007/s10334-019-00790-y
Mendichovszky I, Pullens P, Dekkers I, Nery F, Bane O, Pohlmann A, de Boer A, Ljimani A, Odudu A, Buchanan C, Sharma K, Laustsen C, Harteveld A, Golay X, Pedrosa I, Alsop D, Fain S, Caroli A, Prasad P, Francis S, Sigmund E, Fernández-Seara M, Sourbron S (2020) Technical recommendations for clinical translation of renal MRI: a consensus project of the Cooperation in Science and Technology Action PARENCHIMA. MAGMA 33(1):131-140. https://doi.org/10.1007/s10334-019-00784-w
Bane O, Mendichovszky IA, Milani B, Dekkers IA, Deux JF, Eckerbom P, Grenier N, Hall ME, Inoue T, Laustsen C, Lerman LO, Liu C, Morrell G, Pedersen M, Pruijm M, Sadowski EA, Seeliger E, Sharma K, Thoeny H, Vermathen P, Wang ZJ, Serafin Z, Zhang JL, Francis ST, Sourbron S, Pohlmann A, Fain SB, Prasad PV (2020) Consensus-based technical recommendations for clinical translation of renal BOLD MRI. MAGMA. 33(1):199-215. https://doi.org/10.1007/s10334-019-00802-x
Christen T, Lemasson B, Pannetier N, Farion R, Remy C, Zaharchuk G, Barbier EL (2012) Is T2* enough to assess oxygenation? Quantitative blood oxygen level-dependent analysis in brain tumor. Radiology 262(2):495-502. https://doi.org/10.1148/radiol.11110518
Bryan RN (2012) Science to practice: is T2* enough to assess oxygenation? Radiology 262(2):375-377. https://doi.org/10.1148/radiol.11112449
Funding
This study was funded by Beijing Municipal Administration of Hospitals’ Ascent Plan (Code: DFL20180802).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
These authors declared no conflict of interest.
Ethical approval
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee as well as with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.
Informed consent
Informed consent was obtained from all individual participants included in the study.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zheng, SS., He, YM. & Lu, J. Noninvasive evaluation of diabetic patients with high fasting blood glucose using DWI and BOLD MRI. Abdom Radiol 46, 1659–1669 (2021). https://doi.org/10.1007/s00261-020-02780-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00261-020-02780-4