Skip to main content

Advertisement

Log in

Comparison of percentage changes in quantitative diffusion parameters for assessing pathological complete response to neoadjuvant therapy in locally advanced rectal cancer: a meta-analysis

  • Special Section: Rectal Cancer
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate and compare the diagnostic performance of percentage changes in apparent diffusion coefficient (∆ADC%) and slow diffusion coefficient (∆D%) for assessing pathological complete response (pCR) to neoadjuvant therapy in patients with locally advanced rectal cancer (LARC).

Methods

A systematic search in PubMed, EMBASE, the Web of Science, and the Cochrane Library was performed to retrieve related original studies. For each parameter (∆ADC% and ∆D%), we pooled the sensitivity, specificity and calculated the area under summary receiver operating characteristic curve (AUROC) values. Meta-regression and subgroup analyses were performed to explore heterogeneity among the studies on ∆ADC%.

Results

15 original studies (804 patients with 805 lesions, 15 studies on ∆ADC%, 4 of the studies both on ∆ADC% and ∆D%) were included. pCR was observed in 213 lesions (26.46%). For the assessment of pCR, the pooled sensitivity, specificity and AUROC of ∆ADC% were 0.83 (95% confidence intervals [CI] 0.76, 0.89), 0.74 (95% CI 0.66, 0.81), 0.87 (95% CI 0.83, 0.89), and ∆D% were 0.70 (95% CI 0.52, 0.84), 0.81 (95% CI 0.65, 0.90), 0.81 (95% CI 0.77, 0.84), respectively. In the four studies on the both metrics, ∆ADC% yielded an equivalent diagnostic performance (AUROC 0.80 [95% CI 0.76, 0.83]) to ∆D%, but lower than in the studies (n = 11) only on ∆ADC% (AUROC 0.88 [95% CI 0.85, 0.91]). Meta-regression and subgroup analyses showed no significant factors affecting heterogeneity.

Conclusions

Our meta-analysis confirms that ∆ADC% could reliably evaluate pCR in patients with LARC after neoadjuvant therapy. ∆D% may not be superior to ∆ADC%, which deserves further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

ADC:

Apparent diffusion coefficient

AUROC:

Area under receiver operating characteristic curve

CI:

Confidence intervals

D:

Slow diffusion coefficient

DWI:

Diffusion-weighted imaging

FP:

False positive

FN:

False negative

IVIM:

Intravoxel incoherent motion

LARC:

Locally advanced rectal cancer

MRI:

Magnetic resonance imaging

pCR:

Pathological complete response

PICOS:

Problem/population, intervention, comparison, and outcome

QUADAS:

Quality assessment for studies of diagnostic accuracy

ROI:

Region of interest

SROC:

Summary receiver operating characteristic curve

T:

Tesla

TP:

True positive

TN:

True negative

References

  1. Maas M, Nelemans PJ, Valentini V et al. (2010) Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol 11 (9):835-844. https://doi.org/10.1016/s1470-2045(10)70172-8

    Article  PubMed  Google Scholar 

  2. Mandard AM, Dalibard F, Mandard JC et al. (1994) Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer 73 (11):2680-2686. https://doi.org/10.1002/1097-0142(19940601)73:11%3c2680::aid-cncr2820731105%3e3.0.co;2-c

    Article  CAS  PubMed  Google Scholar 

  3. Smith JJ, Garcia-Aguilar J (2015) Advances and challenges in treatment of locally advanced rectal cancer. J Clin Oncol 33 (16):1797-1808. https://doi.org/10.1200/JCO.2014.60.1054

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xu Q, Xu Y, Sun H et al. (2018) Quantitative intravoxel incoherent motion parameters derived from whole-tumor volume for assessing pathological complete response to neoadjuvant chemotherapy in locally advanced rectal cancer. J Magn Reson Imaging 48 (1):248-258. https://doi.org/10.1002/jmri.25931

    Article  PubMed  Google Scholar 

  5. Smith CA, Kachnic LA (2018) Evolving Treatment Paradigm in the Treatment of Locally Advanced Rectal Cancer. Journal of the National Comprehensive Cancer Network 16 (7):909-915. https://doi.org/10.6004/jnccn.2018.7032

    Article  PubMed  Google Scholar 

  6. Schurink NW, Lambregts DMJ, Beets-Tan RGH (2019) Diffusion-weighted imaging in rectal cancer: current applications and future perspectives. Br J Radiol 92 (1096):20180655. https://doi.org/10.1259/bjr.20180655

    Article  Google Scholar 

  7. Wu LM, Zhu J, Hu J et al. (2013) Is there a benefit in using magnetic resonance imaging in the prediction of preoperative neoadjuvant therapy response in locally advanced rectal cancer? Int J Colorectal Dis 28 (9):1225-1238. https://doi.org/10.1007/s00384-013-1676-y

    Article  PubMed  Google Scholar 

  8. Bassaneze T, Goncalves JE, Faria JF et al. (2017) Quantitative Aspects of Diffusion-weighted Magnetic Resonance Imaging in Rectal Cancer Response to Neoadjuvant Therapy. Radiol Oncol 51 (3):270-276. https://doi.org/10.1515/raon-2017-0025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Delli Pizzi A, Cianci R, Genovesi D et al. (2018) Performance of diffusion-weighted magnetic resonance imaging at 3.0T for early assessment of tumor response in locally advanced rectal cancer treated with preoperative chemoradiation therapy. Abdominal Radiology 43 (9):2221-2230. https://doi.org/10.1007/s00261-018-1457-8

  10. Engin G, Sharifov R, Gural Z et al. (2012) Can diffusion-weighted MRI determine complete responders after neoadjuvant chemoradiation for locally advanced rectal cancer? Diagnostic and Interventional Radiology 18 (6):574-581. https://doi.org/10.4261/1305-3825.Dir.5755-12.1

    Article  PubMed  Google Scholar 

  11. Foti PV, Privitera G, Piana S et al. (2016) Locally advanced rectal cancer: Qualitative and quantitative evaluation of diffusion-weighted MR imaging in the response assessment after neoadjuvant chemo-radiotherapy. Eur J Radiol Open 3:145-152. https://doi.org/10.1016/j.ejro.2016.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lu W, Jing H, Ju-Mei Z et al. (2017) Intravoxel incoherent motion diffusion-weighted imaging for discriminating the pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Sci Rep 7 (1):8496. https://doi.org/10.1038/s41598-017-09227-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nougaret S, Vargas HA, Lakhman Y et al. (2016) Intravoxel Incoherent Motion–derived Histogram Metrics for Assessment of Response after Combined Chemotherapy and Radiation Therapy in Rectal Cancer: Initial Experience and Comparison between Single-Section and Volumetric Analyses. Radiology 280 (2):446-454. https://doi.org/10.1148/radiol.2016150702

    Article  PubMed  Google Scholar 

  14. Petrillo A, Fusco R, Granata V et al. (2017) MR imaging perfusion and diffusion analysis to assess preoperative Short Course Radiotherapy response in locally advanced rectal cancer: Standardized Index of Shape by DCE-MRI and intravoxel incoherent motion-derived parameters by DW-MRI. Med Oncol 34 (12):198. https://doi.org/10.1007/s12032-017-1059-2

    Article  PubMed  Google Scholar 

  15. Petrillo A, Fusco R, Granata V et al. (2018) Assessing response to neo-adjuvant therapy in locally advanced rectal cancer using Intra-voxel Incoherent Motion modelling by DWI data and Standardized Index of Shape from DCE-MRI. Ther Adv Med Oncol 10:1758835918809875. https://doi.org/10.1177/1758835918809875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang D, She H, Wang X et al. (2020) Diagnostic accuracy of quantitative diffusion parameters in the pathological grading of hepatocellular carcinoma: A meta-analysis. J Magn Reson Imaging 51 (5):1581-1593. https://doi.org/10.1002/jmri.26963

  17. Amodeo S, Rosman AS, Desiato V et al. (2018) MRI-Based Apparent Diffusion Coefficient for Predicting Pathologic Response of Rectal Cancer After Neoadjuvant Therapy: Systematic Review and Meta-Analysis. American Journal of Roentgenology 211 (5):W205-W216. https://doi.org/10.2214/ajr.17.19135

  18. Moher D, Shamseer L, Clarke M et al. (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4 (1):1. https://doi.org/10.1186/2046-4053-4-1

    Article  PubMed  PubMed Central  Google Scholar 

  19. Blažić I, Maksimović R, Gajić M et al. (2015) Apparent diffusion coefficient measurement covering complete tumor area better predicts rectal cancer response to neoadjuvant chemoradiotherapy. Croat Med J 56 (5):460-469. https://doi.org/10.3325/cmj.2015.56.460

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vogelgesang F, Schlattmann P, Dewey M (2018) The Evaluation of Bivariate Mixed Models in Meta-analyses of Diagnostic Accuracy Studies with SAS, Stata and R. Methods Inf Med 57 (3):111-119. https://doi.org/10.3414/ME17-01-0021

    Article  Google Scholar 

  21. Leeflang MM, Deeks JJ, Takwoingi Y et al. (2013) Cochrane diagnostic test accuracy reviews. Syst Rev 2:82. https://doi.org/10.1186/2046-4053-2-82

    Article  PubMed  PubMed Central  Google Scholar 

  22. Blazic IM, Lilic GB, Gajic MM (2017) Quantitative Assessment of Rectal Cancer Response to Neoadjuvant Combined Chemotherapy and Radiation Therapy: Comparison of Three Methods of Positioning Region of Interest for ADC Measurements at Diffusion-weighted MR Imaging. Radiology 282 (2):418-428. https://doi.org/10.1148/radiol.2016151908

    Article  PubMed  Google Scholar 

  23. Chen YG, Chen MQ, Guo YY et al. (2016) Apparent Diffusion Coefficient Predicts Pathology Complete Response of Rectal Cancer Treated with Neoadjuvant Chemoradiotherapy. PLoS One 11 (4):e0153944. https://doi.org/10.1371/journal.pone.0153944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Curvo-Semedo L, Lambregts DM, Maas M et al. (2011) Rectal cancer: assessment of complete response to preoperative combined radiation therapy with chemotherapy–conventional MR volumetry versus diffusion-weighted MR imaging. Radiology 260 (3):734-743. https://doi.org/10.1148/radiol.11102467

    Article  PubMed  Google Scholar 

  25. Genovesi D, Filippone A, Ausili Cefaro G et al. (2013) Diffusion-weighted magnetic resonance for prediction of response after neoadjuvant chemoradiation therapy for locally advanced rectal cancer: preliminary results of a monoinstitutional prospective study. Eur J Surg Oncol 39 (10):1071-1078. https://doi.org/10.1016/j.ejso.2013.07.090

    Article  CAS  PubMed  Google Scholar 

  26. Hu F, Tang W, Sun Y et al. (2017) The value of diffusion kurtosis imaging in assessing pathological complete response to neoadjuvant chemoradiation therapy in rectal cancer: a comparison with conventional diffusion-weighted imaging. Oncotarget 8 (43):75597-75606. https://doi.org/10.18632/oncotarget.17491

    Article  PubMed  PubMed Central  Google Scholar 

  27. Intven M, Reerink O, Philippens ME (2013) Diffusion-weighted MRI in locally advanced rectal cancer : pathological response prediction after neo-adjuvant radiochemotherapy. Strahlenther Onkol 189 (2):117-122. https://doi.org/10.1007/s00066-012-0270-5

    Article  CAS  PubMed  Google Scholar 

  28. Kim SH, Lee JY, Lee JM et al. (2011) Apparent diffusion coefficient for evaluating tumour response to neoadjuvant chemoradiation therapy for locally advanced rectal cancer. Eur Radiol 21 (5):987-995. https://doi.org/10.1007/s00330-010-1989-y

    Article  PubMed  Google Scholar 

  29. Lambrecht M, Vandecaveye V, De Keyzer F et al. (2012) Value of diffusion-weighted magnetic resonance imaging for prediction and early assessment of response to neoadjuvant radiochemotherapy in rectal cancer: preliminary results. Int J Radiat Oncol Biol Phys 82 (2):863-870. https://doi.org/10.1016/j.ijrobp.2010.12.063

    Article  PubMed  Google Scholar 

  30. Tarallo N, Angeretti MG, Bracchi E et al. (2018) Magnetic resonance imaging in locally advanced rectal cancer: quantitative evaluation of the complete response to neoadjuvant therapy. Pol J Radiol 83:e600-e609. https://doi.org/10.5114/pjr.2018.81156

  31. Yang L, Xia C, Liu D et al. (2020) The role of readout-segmented echo-planar imaging-based diffusion-weighted imaging in evaluating tumor response of locally advanced rectal cancer after neoadjuvant chemoradiotherapy. Acta Radiol:284185119897354. https://doi.org/10.1177/0284185119897354

  32. Richardson M, Garner P, Donegan S (2019) Interpretation of subgroup analyses in systematic reviews: A tutorial. Clinical Epidemiology Global Health 7 (2):192-198. https://doi.org/10.1016/j.cegh.2018.05.005

    Article  Google Scholar 

  33. Napoletano M, Mazzucca D, Prosperi E et al. (2019) Locally advanced rectal cancer: qualitative and quantitative evaluation of diffusion-weighted magnetic resonance imaging in restaging after neoadjuvant chemo-radiotherapy. Abdominal Radiology 44 (11):3664-3673. https://doi.org/10.1007/s00261-019-02012-4

    Article  PubMed  Google Scholar 

  34. Ha HI, Kim AY, Yu CS et al. (2013) Locally advanced rectal cancer: diffusion-weighted MR tumour volumetry and the apparent diffusion coefficient for evaluating complete remission after preoperative chemoradiation therapy. Eur Radiol 23 (12):3345-3353. https://doi.org/10.1007/s00330-013-2936-5

    Article  PubMed  Google Scholar 

  35. Gurdal N, Fayda M, Alishev N et al. (2018) Neoadjuvant volumetric modulated arc therapy in rectal cancer and the correlation of pathological response with diffusion-weighted MRI and apoptotic markers. Tumori 104 (4):266-272. https://doi.org/10.5301/tj.5000702

    Article  CAS  PubMed  Google Scholar 

  36. Li YL, Wu LM, Chen XX et al. (2014) Is diffusion-weighted MRI superior to FDG-PET or FDG-PET/CT in evaluating and predicting pathological response to preoperative neoadjuvant therapy in patients with rectal cancer? J Dig Dis 15 (10):525-537. https://doi.org/10.1111/1751-2980.12174

    Article  CAS  PubMed  Google Scholar 

  37. Rosenberg R, Herrmann K, Gertler R et al. (2009) The predictive value of metabolic response to preoperative radiochemotherapy in locally advanced rectal cancer measured by PET/CT. Int J Colorectal Dis 24 (2):191-200. https://doi.org/10.1007/s00384-008-0616-8

    Article  PubMed  Google Scholar 

  38. Dinter DJ, Horisberger K, Zechmann C et al. (2009) Can dynamic MR imaging predict response in patients with rectal cancer undergoing cetuximab-based neoadjuvant chemoradiation? Onkologie 32 (3):86-93. https://doi.org/10.1159/000194950

    Article  PubMed  Google Scholar 

  39. Oberholzer K, Menig M, Pohlmann A et al. (2013) Rectal cancer: assessment of response to neoadjuvant chemoradiation by dynamic contrast-enhanced MRI. J Magn Reson Imaging 38 (1):119-126. https://doi.org/10.1002/jmri.23952

    Article  PubMed  Google Scholar 

  40. Kim SH, Lee JM, Gupta SN et al. (2014) Dynamic contrast-enhanced MRI to evaluate the therapeutic response to neoadjuvant chemoradiation therapy in locally advanced rectal cancer. J Magn Reson Imaging 40 (3):730-737. https://doi.org/10.1002/jmri.24387

    Article  PubMed  Google Scholar 

  41. Li J, Wang J, Pang J et al. (2019) Optimized Parameters of Diffusion-Weighted MRI for Prediction of the Response to Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer. Biomed Res Int 2019:9392747. https://doi.org/10.1155/2019/9392747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liang CY, Chen MD, Zhao XX et al. (2019) Multiple mathematical models of diffusion-weighted magnetic resonance imaging combined with prognostic factors for assessing the response to neoadjuvant chemotherapy and radiation therapy in locally advanced rectal cancer. Eur J Radiol 110:249-255. https://doi.org/10.1016/j.ejrad.2018.12.005

    Article  PubMed  Google Scholar 

  43. Oberholzer K, Menig M, Kreft A et al. (2012) Rectal cancer: mucinous carcinoma on magnetic resonance imaging indicates poor response to neoadjuvant chemoradiation. Int J Radiat Oncol Biol Phys 82 (2):842-848. https://doi.org/10.1016/j.ijrobp.2010.08.057

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation (Grant No. 201905010003), and Health and Family Planning Commission of Hunan Province (Grant No. 20200068).

Author information

Authors and Affiliations

Authors

Contributions

KC and LPL contributed to the study conception and design. Project development, data collection and analysis were performed by KC, HLS, FH, TW, and TL. The first draft of the manuscript was written by KC and edited by TL and LPL. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Tao Li or Liang-Ping Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., She, HL., Wu, T. et al. Comparison of percentage changes in quantitative diffusion parameters for assessing pathological complete response to neoadjuvant therapy in locally advanced rectal cancer: a meta-analysis. Abdom Radiol 46, 894–908 (2021). https://doi.org/10.1007/s00261-020-02770-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-020-02770-6

Keywords

Navigation