Skip to main content

Advertisement

Log in

Abdominal and pelvic 18F-FDG PET/MR: a review of current and emerging oncologic applications

  • Review
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) using fluorodeoxyglucose (18F-FDG) combined with magnetic resonance imaging (MR) is an emerging hybrid modality that has shown utility in evaluating abdominal and pelvic disease entities. Together, the high soft tissue contrast and metabolic/functional imaging capabilities make this modality ideal for oncologic imaging in many organ systems. Its clinical utility continues to evolve and future research will help solidify its role in oncologic imaging. In this manuscript, we aim to (1) provide an overview of the various PET/MR systems, describing the strengths and weaknesses of each system, and (2) review the oncologic applications for 18F-FDG PET/MR in the abdomen and pelvis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Townsend DW (2008) Combined positron emission tomography-computed tomography: the historical perspective. Semin Ultrasound CT MR 29:232–235. https://doi.org/10.1053/j.sult.2008.05.006

  2. Czernin J, Allen-Auerbach M, Nathanson D, Herrmann K (2013) PET/CT in Oncology: Current Status and Perspectives. Curr Radiol Rep 1:177–190. https://doi.org/10.1007/s40134-013-0016-x

  3. Torigian DA, Zaidi H, Kwee TC, et al (2013) PET/MR imaging: technical aspects and potential clinical applications. Radiology 267:26–44. https://doi.org/10.1148/radiol.13121038

  4. Boss DS, Olmos RV, Sinaasappel M, et al (2008) Application of PET/CT in the development of novel anticancer drugs. Oncologist 13:25–38. https://doi.org/10.1634/theoncologist.2007-0097

  5. Muzic RF Jr, DiFilippo FP (2014) Positron emission tomography-magnetic resonance imaging: technical review. Semin Roentgenol 49:242–254. https://doi.org/10.1053/j.ro.2014.10.001

  6. Catana C, Guimaraes AR, Rosen BR (2013) PET and MR imaging: the odd couple or a match made in heaven? J Nucl Med 54:815–824. https://doi.org/10.2967/jnumed.112.112771

  7. Zaidi H, Ojha N, Morich M, et al (2011) Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol 56:3091–3106. https://doi.org/10.1088/0031-9155/56/10/013

  8. Veit-Haibach P, Kuhn FP, Wiesinger F, et al (2013) PET-MR imaging using a tri-modality PET/CT-MR system with a dedicated shuttle in clinical routine. MAGMA 26:25–35. https://doi.org/10.1007/s10334-012-0344-5

  9. Delso G, Fürst S, Jakoby B, et al (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52:1914–1922. https://doi.org/10.2967/jnumed.111.092726

  10. Levin CS, Maramraju SH, Khalighi MM, et al (2016) Design Features and Mutual Compatibility Studies of the Time-of-Flight PET Capable GE SIGNA PET/MR System. IEEE Trans Med Imaging 35:1907–1914. https://doi.org/10.1109/TMI.2016.2537811

  11. Berger KL, Nicholson SA, Dehdashti F, Siegel BA (2000) FDG PET Evaluation of Mucinous Neoplasms. American Journal of Roentgenology 174:1005–1008. https://doi.org/10.2214/ajr.174.4.1741005

  12. Broski SM, Goenka AH, Kemp BJ, Johnson GB (2018) Clinical PET/MRI: 2018 Update. AJR Am J Roentgenol 211:295–313. https://doi.org/10.2214/AJR.18.20001

  13. Spick C, Herrmann K, Czernin J (2016) 18F-FDG PET/CT and PET/MRI Perform Equally Well in Cancer: Evidence from Studies on More Than 2,300 Patients. J Nucl Med 57:420–430. https://doi.org/10.2967/jnumed.115.158808

  14. Czernin J, Ta L, Herrmann K (2014) Does PET/MR Imaging Improve Cancer Assessments? Literature Evidence from More Than 900 Patients. J Nucl Med 55:59S–62S. https://doi.org/10.2967/jnumed.114.141838

  15. Fowler KJ, McConathy J, Narra VR (2014) Whole-body simultaneous positron emission tomography (PET)-MR: optimization and adaptation of MRI sequences. J Magn Reson Imaging 39:259–268. https://doi.org/10.1002/jmri.24308

  16. Fraum TJ, Fowler KJ, McConathy J, et al (2015) PET/MRI for the body imager: abdominal and pelvic oncologic applications. Abdom Imaging 40:1387–1404. https://doi.org/10.1007/s00261-015-0390-3

  17. Kirchner J, Deuschl C, Grueneisen J, et al (2017) 18F-FDG PET/MRI in patients suffering from lymphoma: how much MRI information is really needed? Eur J Nucl Med Mol Imaging 44:1005–1013. https://doi.org/10.1007/s00259-017-3635-2

  18. Kirchner J, Sawicki LM, Suntharalingam S, et al (2017) Whole-body staging of female patients with recurrent pelvic malignancies: Ultra-fast 18F-FDG PET/MRI compared to 18F-FDG PET/CT and CT. PLoS One 12:e0172553. https://doi.org/10.1371/journal.pone.0172553

  19. Catana C, van der Kouwe A, Benner T, et al (2009) Rigid-body MR-assisted PET motion correction. J Nucl Med 50:592–592

  20. Johnson PM, Taylor R, Whelan T, et al (2019) Rigid-body motion correction in hybrid PET/MRI using spherical navigator echoes. Phys Med Biol 64:08NT03. https://doi.org/10.1088/1361-6560/ab10b2

  21. Catana C (2015) Motion correction options in PET/MRI. Semin Nucl Med 45:212–223. https://doi.org/10.1053/j.semnuclmed.2015.01.001

  22. Zeng F, Nogami M, Ueno YR, et al (2020) Diagnostic performance of zero-TE lung MR imaging in FDG PET/MRI for pulmonary malignancies. Eur Radiol 30:4995–5003. https://doi.org/10.1007/s00330-020-06848-z

  23. Raman SP, Chen Y, Fishman EK (2015) Cross-sectional imaging and the role of positron emission tomography in pancreatic cancer evaluation. Semin Oncol 42:40–58. https://doi.org/10.1053/j.seminoncol.2014.12.005

  24. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) on Pancreatic Adenocarcinoma

  25. Cascinu S, Falconi M, Valentini V, et al (2010) Pancreatic cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 21 Suppl 5:v55–8. https://doi.org/10.1093/annonc/mdq165

  26. ACR Appropriateness Criteria: Staging of Pancreatic Ductal Adenocarcinoma

  27. Joo I, Lee JM, Lee DH, et al (2017) Preoperative Assessment of Pancreatic Cancer with FDG PET/MR Imaging versus FDG PET/CT Plus Contrast-enhanced Multidetector CT: A Prospective Preliminary Study. Radiology 282:149–159. https://doi.org/10.1148/radiol.2016152798

  28. Best LM, Rawji V, Pereira SP, et al (2017) Imaging modalities for characterising focal pancreatic lesions. Cochrane Database Syst Rev 4:CD010213. https://doi.org/10.1002/14651858.CD010213.pub2

  29. Delbeke D, Rose DM, Chapman WC, et al (1999) Optimal interpretation of FDG PET in the diagnosis, staging and management of pancreatic carcinoma. J Nucl Med 40:1784–1791

  30. Nagamachi S, Nishii R, Wakamatsu H, et al (2013) The usefulness of (18)F-FDG PET/MRI fusion image in diagnosing pancreatic tumor: comparison with (18)F-FDG PET/CT. Ann Nucl Med 27:554–563. https://doi.org/10.1007/s12149-013-0719-3

  31. Tatsumi M, Isohashi K, Onishi H, et al (2011) 18F-FDG PET/MRI fusion in characterizing pancreatic tumors: comparison to PET/CT. Int J Clin Oncol 16:408–415. https://doi.org/10.1007/s10147-011-0202-x

  32. Katz MHG, Fleming JB, Bhosale P, et al (2012) Response of borderline resectable pancreatic cancer to neoadjuvant therapy is not reflected by radiographic indicators. Cancer 118:5749–5756. https://doi.org/10.1002/cncr.27636

  33. Kittaka H, Takahashi H, Ohigashi H, et al (2013) Role of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in predicting the pathologic response to preoperative chemoradiation therapy in patients with resectable T3 pancreatic cancer. World J Surg 37:169–178. https://doi.org/10.1007/s00268-012-1775-x

  34. Cuneo KC, Chenevert TL, Ben-Josef E, et al (2014) A pilot study of diffusion-weighted MRI in patients undergoing neoadjuvant chemoradiation for pancreatic cancer. Transl Oncol 7:644–649. https://doi.org/10.1016/j.tranon.2014.07.005

  35. Wang ZJ, Behr S, Consunji MV, et al (2018) Early Response Assessment in Pancreatic Ductal Adenocarcinoma Through Integrated PET/MRI. AJR Am J Roentgenol 211:1010–1019. https://doi.org/10.2214/AJR.18.19602

  36. Ferlay J, Colombet M, Soerjomataram I, et al (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144:1941–1953. https://doi.org/10.1002/ijc.31937

  37. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34. https://doi.org/10.3322/caac.21551

  38. Liu P-H, Wu K, Ng K, et al (2019) Association of Obesity With Risk of Early-Onset Colorectal Cancer Among Women. JAMA Oncol 5:37–44. https://doi.org/10.1001/jamaoncol.2018.4280

  39. Wilhelmsen M, Kring T, Jorgensen LN, et al (2014) Determinants of recurrence after intended curative resection for colorectal cancer. Scand J Gastroenterol 49:1399–1408. https://doi.org/10.3109/00365521.2014.926981

  40. Tsikitis VL, Larson DW, Huebner M, et al (2014) Predictors of recurrence free survival for patients with stage II and III colon cancer. BMC Cancer 14:336. https://doi.org/10.1186/1471-2407-14-336

  41. Aklilu M, Eng C (2011) The current landscape of locally advanced rectal cancer. Nat Rev Clin Oncol 8:649–659. https://doi.org/10.1038/nrclinonc.2011.118

  42. National Comprehensive Cancer Network. Colon Cancer (Version 2.2020). www.nccn.org/professionals/physician_gls/pdf/colon.pdf. Accessed 8 Apr 2020

  43. National Comprehensive Cancer Network. Rectal Cancer (Version 2.2020). www.nccn.org/professionals/physician_gls/pdf/rectal.pdf. Accessed 8 Apr 2020

  44. Horvat N, Petkovska I, Gollub MJ (2018) MR Imaging of Rectal Cancer. Radiol Clin North Am 56:751–774. https://doi.org/10.1016/j.rcl.2018.04.004

  45. Paspulati RM, Partovi S, Herrmann KA, et al (2015) Comparison of hybrid FDG PET/MRI compared with PET/CT in colorectal cancer staging and restaging: a pilot study. Abdom Imaging 40:1415–1425. https://doi.org/10.1007/s00261-015-0474-0

  46. Catalano O, Kilcoyne A, Signore A, et al (2018) Lower Gastrointestinal Tract Applications of PET/Computed Tomography and PET/MR Imaging. Radiol Clin North Am 56:821–834. https://doi.org/10.1016/j.rcl.2018.05.001

  47. Catalano OA, Coutinho AM, Sahani DV, et al (2017) Colorectal cancer staging: comparison of whole-body PET/CT and PET/MR. Abdom Radiol (NY) 42:1141–1151. https://doi.org/10.1007/s00261-016-0985-3

  48. Kang B, Lee JM, Song YS, et al (2016) Added Value of Integrated Whole-Body PET/MRI for Evaluation of Colorectal Cancer: Comparison With Contrast-Enhanced MDCT. AJR Am J Roentgenol 206:W10–20. https://doi.org/10.2214/AJR.14.13818

  49. Amorim BJ, Hong TS, Blaszkowsky LS, et al (2019) Clinical impact of PET/MR in treated colorectal cancer patients. Eur J Nucl Med Mol Imaging 46:2260–2269. https://doi.org/10.1007/s00259-019-04449-7

  50. Charnsangavej C, Clary B, Fong Y, et al (2006) Selection of patients for resection of hepatic colorectal metastases: expert consensus statement. Ann Surg Oncol 13:1261–1268. https://doi.org/10.1245/s10434-006-9023-y

  51. Glehen O, Kwiatkowski F, Sugarbaker PH, et al (2004) Cytoreductive surgery combined with perioperative intraperitoneal chemotherapy for the management of peritoneal carcinomatosis from colorectal cancer: a multi-institutional study. J Clin Oncol 22:3284–3292

  52. Plodeck V, Rahbari NN, Weitz J, et al (2019) Correction to: FDG-PET/MRI in patients with pelvic recurrence of rectal cancer: first clinical experiences. Eur Radiol 29:1064. https://doi.org/10.1007/s00330-018-5677-7

  53. Brendle C, Schwenzer NF, Rempp H, et al (2016) Assessment of metastatic colorectal cancer with hybrid imaging: comparison of reading performance using different combinations of anatomical and functional imaging techniques in PET/MRI and PET/CT in a short case series. Eur J Nucl Med Mol Imaging 43:123–132. https://doi.org/10.1007/s00259-015-3137-z

  54. El-Serag HB, Davila JA, Petersen NJ, McGlynn KA (2003) The continuing increase in the incidence of hepatocellular carcinoma in the United States: an update. Ann Intern Med 139:817–823. https://doi.org/10.7326/0003-4819-139-10-200311180-00009

  55. Torizuka T, Tamaki N, Inokuma T, et al (1995) In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET. J Nucl Med 36:1811–1817

  56. Wudel LJ Jr, Delbeke D, Morris D, et al (2003) The role of [18F]fluorodeoxyglucose positron emission tomography imaging in the evaluation of hepatocellular carcinoma. Am Surg 69:117–24; discussion 124–6

  57. Kawaoka T, Aikata H, Takaki S, et al (2009) FDG positron emission tomography/computed tomography for the detection of extrahepatic metastases from hepatocellular carcinoma. Hepatol Res 39:134–142. https://doi.org/10.1111/j.1872-034X.2008.00416.x

  58. Hectors SJ, Wagner M, Besa C, et al (2018) Multiparametric FDG-PET/MRI of Hepatocellular Carcinoma: Initial Experience. Contrast Media Mol Imaging 2018:5638283. https://doi.org/10.1155/2018/5638283

  59. Hu J, Chen F-Y, Zhou K-Q, et al (2017) Intrahepatic cholangiocarcinoma patients without indications of lymph node metastasis not benefit from lymph node dissection. Oncotarget 8:113817–113827. https://doi.org/10.18632/oncotarget.22852

  60. Kim JY, Kim M-H, Lee TY, et al (2008) Clinical role of 18F-FDG PET-CT in suspected and potentially operable cholangiocarcinoma: a prospective study compared with conventional imaging. Am J Gastroenterol 103:1145–1151. https://doi.org/10.1111/j.1572-0241.2007.01710.x

  61. Ferrone C, Goyal L, Qadan M, et al (2019) Management implications of fluorodeoxyglucose positron emission tomography/magnetic resonance in untreated intrahepatic cholangiocarcinoma. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-019-04558-3

  62. Manfredi S, Lepage C, Hatem C, et al (2006) Epidemiology and management of liver metastases from colorectal cancer. Ann Surg 244:254–259. https://doi.org/10.1097/01.sla.0000217629.94941.cf

  63. Leonard GD, Brenner B, Kemeny NE (2005) Neoadjuvant chemotherapy before liver resection for patients with unresectable liver metastases from colorectal carcinoma. J Clin Oncol 23:2038–2048. https://doi.org/10.1200/JCO.2005.00.349

  64. Kelly H, Goldberg RM (2005) Systemic therapy for metastatic colorectal cancer: current options, current evidence. J Clin Oncol 23:4553–4560. https://doi.org/10.1200/JCO.2005.17.749

  65. de Geus-Oei L-F, Vriens D, van Laarhoven HWM, et al (2009) Monitoring and predicting response to therapy with 18F-FDG PET in colorectal cancer: a systematic review. J Nucl Med 50 Suppl 1:43S–54S. https://doi.org/10.2967/jnumed.108.057224

  66. Choi M, Kollepara SLS, Heilbrun LK, et al (2015) PET scans as a predictive marker of survival in advanced colorectal cancer. Clin Colorectal Cancer 14:35–40. https://doi.org/10.1016/j.clcc.2014.10.001

  67. van Kessel CS, Buckens CFM, van den Bosch MAAJ, et al (2012) Preoperative imaging of colorectal liver metastases after neoadjuvant chemotherapy: a meta-analysis. Ann Surg Oncol 19:2805–2813. https://doi.org/10.1245/s10434-012-2300-z

  68. Beiderwellen K, Geraldo L, Ruhlmann V, et al (2015) Accuracy of [18F]FDG PET/MRI for the Detection of Liver Metastases. PLoS One 10:e0137285. https://doi.org/10.1371/journal.pone.0137285

  69. Donati OF, Hany TF, Reiner CS, et al (2010) Value of retrospective fusion of PET and MR images in detection of hepatic metastases: comparison with 18F-FDG PET/CT and Gd-EOB-DTPA-enhanced MRI. J Nucl Med 51:692–699. https://doi.org/10.2967/jnumed.109.068510

  70. Pace L, Nicolai E, Luongo A, et al (2014) Comparison of whole-body PET/CT and PET/MRI in breast cancer patients: lesion detection and quantitation of 18F-deoxyglucose uptake in lesions and in normal organ tissues. Eur J Radiol 83:289–296. https://doi.org/10.1016/j.ejrad.2013.11.002

  71. Lee DH, Lee JM, Hur BY, et al (2016) Colorectal Cancer Liver Metastases: Diagnostic Performance and Prognostic Value of PET/MR Imaging. Radiology 280:782–792. https://doi.org/10.1148/radiol.2016151975

  72. Yong TW, Yuan ZZ, Jun Z, et al (2011) Sensitivity of PET/MR images in liver metastases from colorectal carcinoma. Hell J Nucl Med 14:264–268

  73. Kirchner J, Sawicki LM, Deuschl C, et al (2017) 18 F-FDG PET/MR imaging in patients with suspected liver lesions: Value of liver-specific contrast agent Gadobenate dimeglumine. PLoS One 12:e0180349. https://doi.org/10.1371/journal.pone.0180349

  74. Umutlu L, Herrmann K (2018) PET/MR Imaging: Current and Emerging Applications. Springer, Cham

  75. Raanani P, Shasha Y, Perry C, et al (2006) Is CT scan still necessary for staging in Hodgkin and non-Hodgkin lymphoma patients in the PET/CT era? Ann Oncol 17:117–122. https://doi.org/10.1093/annonc/mdj024

  76. Elstrom RL, Leonard JP, Coleman M, Brown RKJ (2008) Combined PET and low-dose, noncontrast CT scanning obviates the need for additional diagnostic contrast-enhanced CT scans in patients undergoing staging or restaging for lymphoma. Ann Oncol 19:1770–1773. https://doi.org/10.1093/annonc/mdn282

  77. Le Dortz L, De Guibert S, Bayat S, et al (2010) Diagnostic and prognostic impact of 18F-FDG PET/CT in follicular lymphoma. Eur J Nucl Med Mol Imaging 37:2307–2314. https://doi.org/10.1007/s00259-010-1539-5

  78. Cheson BD, Fisher RI, Barrington SF, et al (2014) Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 32:3059–3068. https://doi.org/10.1200/JCO.2013.54.8800

  79. Heacock L, Weissbrot J, Raad R, et al (2015) PET/MRI for the evaluation of patients with lymphoma: initial observations. AJR Am J Roentgenol 204:842–848. https://doi.org/10.2214/AJR.14.13181

  80. Herrmann K, Queiroz M, Huellner MW, et al (2015) Diagnostic performance of FDG-PET/MRI and WB-DW-MRI in the evaluation of lymphoma: a prospective comparison to standard FDG-PET/CT. BMC Cancer 15:1002. https://doi.org/10.1186/s12885-015-2009-z

  81. Huang B, Law MW-M, Khong P-L (2009) Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology 251:166–174. https://doi.org/10.1148/radiol.2511081300

  82. Barrington SF, Mikhaeel NG, Kostakoglu L, et al (2014) Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol 32:3048–3058. https://doi.org/10.1200/JCO.2013.53.5229

  83. Wang H-Y, Ding H-J, Chen J-H, et al (2012) Meta-analysis of the diagnostic performance of [18F]FDG-PET and PET/CT in renal cell carcinoma. Cancer Imaging 12:464–474. https://doi.org/10.1102/1470-7330.2012.0042

  84. Jadvar H (2013) Imaging evaluation of prostate cancer with 18F-fluorodeoxyglucose PET/CT: utility and limitations. Eur J Nucl Med Mol Imaging 40 Suppl 1:S5–10. https://doi.org/10.1007/s00259-013-2361-7

  85. Wallitt KL, Khan SR, Dubash S, et al (2017) Clinical PET Imaging in Prostate Cancer. Radiographics 37:1512–1536. https://doi.org/10.1148/rg.2017170035

  86. Nie J, Zhang J, Gao J, et al (2017) Diagnostic role of 18F-FDG PET/MRI in patients with gynecological malignancies of the pelvis: A systematic review and meta-analysis. PLoS One 12:e0175401. https://doi.org/10.1371/journal.pone.0175401

  87. Queiroz MA, Kubik-Huch RA, Hauser N, et al (2015) PET/MRI and PET/CT in advanced gynaecological tumours: initial experience and comparison. Eur Radiol 25:2222–2230. https://doi.org/10.1007/s00330-015-3657-8

  88. Schwartz M, Gavane SC, Bou-Ayache J, et al (2018) Feasibility and diagnostic performance of hybrid PET/MRI compared with PET/CT for gynecological malignancies: a prospective pilot study. Abdom Radiol (NY) 43:3462–3467. https://doi.org/10.1007/s00261-018-1665-2

  89. Nakajo K, Tatsumi M, Inoue A, et al (2010) Diagnostic performance of fluorodeoxyglucose positron emission tomography/magnetic resonance imaging fusion images of gynecological malignant tumors: comparison with positron emission tomography/computed tomography. Jpn J Radiol 28:95–100. https://doi.org/10.1007/s11604-009-0387-3

  90. Grueneisen J, Schaarschmidt BM, Heubner M, et al (2015) Integrated PET/MRI for whole-body staging of patients with primary cervical cancer: preliminary results. Eur J Nucl Med Mol Imaging 42:1814–1824. https://doi.org/10.1007/s00259-015-3131-5

  91. Olsen JR, Esthappan J, DeWees T, et al (2013) Tumor volume and subvolume concordance between FDG-PET/CT and diffusion-weighted MRI for squamous cell carcinoma of the cervix. J Magn Reson Imaging 37:431–434. https://doi.org/10.1002/jmri.23830

  92. Ho K-C, Lin G, Wang J-J, et al (2009) Correlation of apparent diffusion coefficients measured by 3T diffusion-weighted MRI and SUV from FDG PET/CT in primary cervical cancer. Eur J Nucl Med Mol Imaging 36:200–208. https://doi.org/10.1007/s00259-008-0936-5

  93. Kim S-K, Choi HJ, Park S-Y, et al (2009) Additional value of MR/PET fusion compared with PET/CT in the detection of lymph node metastases in cervical cancer patients. Eur J Cancer 45:2103–2109. https://doi.org/10.1016/j.ejca.2009.04.006

  94. Kitajima K, Suenaga Y, Ueno Y, et al (2014) Fusion of PET and MRI for staging of uterine cervical cancer: comparison with contrast-enhanced 18F-FDG PET/CT and pelvic MRI. Clin Imaging 38:464–469. https://doi.org/10.1016/j.clinimag.2014.02.006

  95. Kitajima K, Suenaga Y, Ueno Y, et al (2013) Value of fusion of PET and MRI for staging of endometrial cancer: Comparison with 18F-FDG contrast-enhanced PET/CT and dynamic contrast-enhanced pelvic MRI. Eur J Radiol 82:1672–1676. https://doi.org/10.1016/j.ejrad.2013.05.005

  96. Stecco A, Buemi F, Cassarà A, et al (2016) Comparison of retrospective PET and MRI-DWI (PET/MRI-DWI) image fusion with PET/CT and MRI-DWI in detection of cervical and endometrial cancer lymph node metastases. Radiol Med 121:537–545. https://doi.org/10.1007/s11547-016-0626-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onofrio Catalano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ward, R.D., Amorim, B., Li, W. et al. Abdominal and pelvic 18F-FDG PET/MR: a review of current and emerging oncologic applications. Abdom Radiol 46, 1236–1248 (2021). https://doi.org/10.1007/s00261-020-02766-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-020-02766-2

Keywords

Navigation