Skip to main content
Log in

Dual-energy CT in diffuse liver disease: is there a role?

  • Special Section: Diffuse Liver Disease
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Dual-energy CT (DECT) can be defined as the use of two different energy levels to identify and quantify material composition. Since its inception, DECT has benefited from remarkable improvements in hardware and clinical applications. DECT enables accurate identification and quantification of multiple materials, including fat, iron, and iodine. As a consequence, multiple studies have investigated the potential role of DECT in the assessment of diffuse liver diseases. While this role is evolving, this article aims to review the most relevant literature on use of DECT for assessment of diffuse liver diseases. Moreover, the basic concepts on DECT techniques, types of image reconstruction, and DECT-dedicated software will be described, focusing on the areas that are most relevant for the evaluation of diffuse liver diseases. Also, we will review the evidence of added value of DECT in detection and assessment of hepatocellular carcinoma which is a known risk in patients with diffuse liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Marcellin P, Kutala BK (2018) Liver diseases: A major, neglected global public health problem requiring urgent actions and large-scale screening. Liver International 38:2–6.

    Article  PubMed  Google Scholar 

  2. Kose S, Ersan G, Tatar B, et al (2015) Evaluation of percutaneous liver biopsy complications in patients with chronic viral hepatitis. The Eurasian Journal of Medicine 47:161.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ratziu V, Charlotte F, Heurtier A, et al. (2005) Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 128:1898–1906

    Article  PubMed  Google Scholar 

  4. Regev A, Berho M, Jeffers LJ, et al (2002) Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterology 97:2614–2618.

    Article  Google Scholar 

  5. Yoon JH, Lee JM, Joo I, et al (2014) Hepatic fibrosis: prospective comparison of MR elastography and US shear-wave elastography for evaluation. Radiology 273:772–782.

    Article  PubMed  Google Scholar 

  6. De Cecco CN, Boll DT, Bolus DN, et al (2017) White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 4: Abdominal and Pelvic Applications. Journal of Computer Assisted Tomography 41:8–14.

    Article  PubMed  Google Scholar 

  7. Rutherford RA, Pullan BR, Isherwood I (1976) Measurement of effective atomic number and electron density using an EMI scanner. Neuroradiology 11:15–21.

    Article  CAS  PubMed  Google Scholar 

  8. Kruger RA, Riederer SJ, Mistretta CA (1977) Relative properties of tomography, K-edge imaging, and K-edge tomography. Medical Physics 4:244–249.

    Article  CAS  PubMed  Google Scholar 

  9. McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications. Radiology 276:637–653. https://doi.org/10.1148/radiol.2015142631

    Article  PubMed  Google Scholar 

  10. Patino M, Prochowski A, Agrawal MD, et al (2016) Material separation using dual-energy CT: current and emerging applications. RadioGraphics 36:1087–1105.

    Article  PubMed  Google Scholar 

  11. Sellerer T, Noël PB, Patino M, et al (2018) Dual-energy CT: a phantom comparison of different platforms for abdominal imaging. Eur Radiol 28:2745–2755.

    Article  PubMed  Google Scholar 

  12. Primak AN, Giraldo JCR, Eusemann CD, et al (2010) Dual-source dual-energy CT with additional tin filtration: dose and image quality evaluation in phantoms and in vivo. American Journal of Roentgenology 195:1164–1174.

    Article  PubMed  Google Scholar 

  13. Silva AC, Morse BG, Hara AK, et al (2011) Dual-Energy (Spectral) CT: Applications in Abdominal Imaging. RadioGraphics 31:1031–1046. https://doi.org/10.1148/rg.314105159

    Article  PubMed  Google Scholar 

  14. Wu L-M, Xu JR, Yin Y, Qu X-H (2010) Usefulness of CT angiography in diagnosing acute gastrointestinal bleeding: a meta-analysis. World Journal of Gastroenterology: WJG 16:3957.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Grasruck M, Kappler S, Reinwand M, Stierstorfer K (2009) Dual energy with dual source CT and kVp switching with single source CT: a comparison of dual energy performance. International Society for Optics and Photonics, p 72583R

  16. Wu E-H, Kim SY, Wang ZJ, et al (2016) Appearance and frequency of gas interface artifacts involving small bowel on rapid-voltage-switching dual-energy CT iodine-density images. American Journal of Roentgenology 206:301–306.

    Article  CAS  PubMed  Google Scholar 

  17. Fornaro J, Leschka S, Hibbeln D, et al (2011) Dual-and multi-energy CT: approach to functional imaging. Insights Imaging 2:149–159.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hartman R, Kawashima A, Takahashi N, et al (2012) Applications of dual-energy CT in urologic imaging: an update. Radiologic Clinics of NA 50:191–205.

    Article  Google Scholar 

  19. Goceri E, Shah ZK, Layman R, et al (2016) Quantification of liver fat: a comprehensive review. Computers in Biology and Medicine 71:174–189.

    Article  PubMed  Google Scholar 

  20. Loomba R, Sanyal AJ (2013) The global NAFLD epidemic. Nature Reviews Gastroenterology and Hepatology 10:686–690.

    Article  CAS  PubMed  Google Scholar 

  21. Veteläinen R, van Vliet A, Gouma DJ, van Gulik TM (2007) Steatosis as a risk factor in liver surgery. Annals of Surgery 245:20.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xu M-M, Brown RS (2015) Liver transplantation for the referring physician. Clinics in Liver Disease 19:135–153.

    Article  PubMed  Google Scholar 

  23. Brunt EM, Janney CG, Di Bisceglie AM, et al (1999) Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterology 94:2467–2474.

    Article  CAS  Google Scholar 

  24. van Werven JR, Marsman HA, Nederveen AJ, et al (2010) Assessment of hepatic steatosis in patients undergoing liver resection: comparison of US, CT, T1-weighted dual-echo MR imaging, and point-resolved 1H MR spectroscopy. Radiology 256:159–168.

    Article  PubMed  Google Scholar 

  25. Wang B, Gao Z, Zou Q, Li L (2003) Quantitative Diagnosis of Fatty Liver With Dual-Energy CT: An experimental study in rabbits. Acta Radiol 44:92–97.

    CAS  PubMed  Google Scholar 

  26. Artz NS, Hines CD, Brunner ST, et al (2012) Quantification of hepatic steatosis with dual-energy computed tomography: comparison with tissue reference standards and quantitative magnetic resonance imaging in the ob/ob mouse. Invest Radiol 47:603.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kramer H, Pickhardt PJ, Kliewer MA, et al (2017) Accuracy of liver fat quantification with advanced CT, MRI, and ultrasound techniques: prospective comparison with MR spectroscopy. American Journal of Roentgenology 208:92–100.

    Article  PubMed  Google Scholar 

  28. Patel BN, Kumbla RA, Berland LL, et al (2013) Material density hepatic steatosis quantification on intravenous contrast-enhanced rapid kilovolt (peak)–switching single-source dual-energy computed tomography. Journal of Computer Assisted Tomography 37:904–910.

    Article  PubMed  Google Scholar 

  29. Hyodo T, Yada N, Hori M, et al (2017) Multimaterial decomposition algorithm for the quantification of liver fat content by using fast-kilovolt-peak switching dual-energy CT: clinical evaluation. Radiology 283:108–118.

    Article  PubMed  Google Scholar 

  30. Hur BY, Lee JM, Hyunsik W, et al (2014) Quantification of the fat fraction in the liver using dual-energy computed tomography and multimaterial decomposition. Journal of Computer Assisted Tomography 38:845–852.

    Article  PubMed  Google Scholar 

  31. Guo Z, Blake GM, Li K, et al (2020) Liver Fat Content Measurement with Quantitative CT Validated against MRI Proton Density Fat Fraction: A Prospective Study of 400 Healthy Volunteers. Radiology 294:89–97.

    Article  PubMed  Google Scholar 

  32. Zheng X, Ren Y, Phillips WT, et al (2013) Assessment of hepatic fatty infiltration using spectral computed tomography imaging: a pilot study. Journal of Computer Assisted Tomography 37:134–141.

    Article  PubMed  Google Scholar 

  33. Pietrangelo A (2010) Hereditary hemochromatosis: pathogenesis, diagnosis, and treatment. Gastroenterology 139:393–408.

    Article  PubMed  Google Scholar 

  34. Porter JB, de Witte T, Cappellini MD, Gattermann N (2016) New insights into transfusion-related iron toxicity: Implications for the oncologist. Critical Reviews in Oncology/Hematology 99:261–271.

    Article  PubMed  Google Scholar 

  35. Kew MC (2014) Hepatic iron overload and hepatocellular carcinoma. Liver Cancer 3:31–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shander A, Sazama K (2010) Clinical consequences of iron overload from chronic red blood cell transfusions, its diagnosis, and its management by chelation therapy. Transfusion 50:1144–1155.

    Article  CAS  PubMed  Google Scholar 

  37. Henninger B, Alustiza J, Garbowski M, Gandon Y (2020) Practical guide to quantification of hepatic iron with MRI. Eur Radiol 30:383–393.

    Article  PubMed  Google Scholar 

  38. Werner S, Krauss B, Haberland U, et al (2019) Dual-energy CT for liver iron quantification in patients with haematological disorders. Eur Radiol 29:2868–2877.

    Article  PubMed  Google Scholar 

  39. Fischer MA, Gnannt R, Raptis D, et al (2011) Quantification of liver fat in the presence of iron and iodine: an ex vivo dual-energy CT study. Invest Radiol 46:351–358.

    Article  CAS  PubMed  Google Scholar 

  40. Joe E, Kim SH, Lee KB, et al (2012) Feasibility and accuracy of dual-source dual-energy CT for noninvasive determination of hepatic iron accumulation. Radiology 262:126–135.

    Article  PubMed  Google Scholar 

  41. Ma Q, Hu J, Yang W, Hou Y (2020) Dual-layer detector spectral CT versus magnetic resonance imaging for the assessment of iron overload in myelodysplastic syndromes and aplastic anemia. Jpn J Radiol 1–8.

  42. Luo XF, Xie XQ, Cheng S, et al (2015) Dual-Energy CT for Patients Suspected of Having Liver Iron Overload: Can Virtual Iron Content Imaging Accurately Quantify Liver Iron Content? Radiology 277:95–103. https://doi.org/10.1148/radiol.2015141856

    Article  PubMed  Google Scholar 

  43. Luo XF, Yang Y, Yan J, et al (2015) Virtual iron concentration imaging based on dual-energy CT for noninvasive quantification and grading of liver iron content: An iron overload rabbit model study. Eur Radiol 25:2657–2664.

    Article  PubMed  Google Scholar 

  44. Abadia AF, Grant KL, Carey KE, et al (2017) Spatial Distribution of Iron Within the Normal Human Liver Using Dual-Source Dual-Energy CT Imaging. Invest Radiol 52:693–700.

    Article  CAS  PubMed  Google Scholar 

  45. Scaglione S, Kliethermes S, Cao G, et al (2015) The epidemiology of cirrhosis in the United States. Journal of Clinical Gastroenterology 49:690–696.

    Article  PubMed  Google Scholar 

  46. Asrani SK, Devarbhavi H, Eaton J, Kamath PS (2019) Burden of liver diseases in the world. Journal of Hepatology 70:151–171.

    Article  PubMed  Google Scholar 

  47. Younossi ZM, Stepanova M, Younossi Y, et al (2020) Epidemiology of chronic liver diseases in the USA in the past three decades. Gut 69:564–568.

    Article  PubMed  Google Scholar 

  48. Schuppan D, Afdhal NH (2008) Liver cirrhosis. The Lancet 371:838–851.

    Article  CAS  Google Scholar 

  49. Horowitz JM, Venkatesh SK, Ehman RL, et al (2017) Evaluation of hepatic fibrosis: a review from the society of abdominal radiology disease focus panel. Abdom Radiol 42:2037–2053.

    Article  Google Scholar 

  50. Guo SL, Su LN, Zhai YN, et al (2017) The clinical value of hepatic extracellular volume fraction using routine multiphasic contrast-enhanced liver CT for staging liver fibrosis. Clinical Radiology 72:242–246.

    Article  CAS  PubMed  Google Scholar 

  51. Sofue K, Tsurusaki M, Mileto A, et al (2018) Dual-energy computed tomography for non-invasive staging of liver fibrosis: Accuracy of iodine density measurements from contrast-enhanced data. Hepatology Research 48:1008–1019.

    Article  PubMed  Google Scholar 

  52. Zissen MH, Wang ZJ, Yee J, et al (2013) Contrast-enhanced CT quantification of the hepatic fractional extracellular space: correlation with diffuse liver disease severity. American Journal of Roentgenology 201:1204–1210.

    Article  PubMed  Google Scholar 

  53. Varenika V, Fu Y, Maher JJ, et al (2013) Hepatic fibrosis: evaluation with semiquantitative contrast-enhanced CT. Radiology 266:151–158.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bandula S, Punwani S, Rosenberg WM, et al (2015) Equilibrium contrast-enhanced CT imaging to evaluate hepatic fibrosis: initial validation by comparison with histopathologic sampling. Radiology 275:136–143.

    Article  PubMed  Google Scholar 

  55. Yoon JH, Lee JM, Klotz E, et al (2015) Estimation of hepatic extracellular volume fraction using multiphasic liver computed tomography for hepatic fibrosis grading. Invest Radiol 50:290–296.

    Article  PubMed  Google Scholar 

  56. Sahin S, Rowland M (2000) Estimation of aqueous distributional spaces in the dual perfused rat liver. The Journal of Physiology 528:199–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kaza RK, Caoili EM, Cohan RH, Platt JF (2011) Distinguishing enhancing from nonenhancing renal lesions with fast kilovoltage-switching dual-energy CT. American Journal of Roentgenology 197:1375–1381.

    Article  PubMed  Google Scholar 

  58. Bottari A, Silipigni S, Carerj ML, et al (2020) Dual-source dual-energy CT in the evaluation of hepatic fractional extracellular space in cirrhosis. La radiologia medica 125:7–14.

    Article  PubMed  Google Scholar 

  59. Dong J, He F, Wang L, et al (2019) Iodine density changes in hepatic and splenic parenchyma in liver cirrhosis with dual energy CT (DECT): a preliminary study. Academic Radiology 26:872–877.

    Article  PubMed  Google Scholar 

  60. Shang S, Cao Q, Han X, et al (2020) Assessing Liver Hemodynamics in Children With Cholestatic Cirrhosis by Use of Dual-Energy Spectral CT. American Journal of Roentgenology 214:665–670.

    Article  PubMed  Google Scholar 

  61. Bak S, Kim JE, Bae K, et al Quantification of liver extracellular volume using dual-energy CT: utility for prediction of liver-related events in cirrhosis. Eur Radiol 1–10.

  62. Chernyak V, Fowler KJ, Kamaya A, et al (2018) Liver Imaging Reporting and Data System (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients. Radiology 289:816–830.

    Article  PubMed  Google Scholar 

  63. Purysko AS, Primak AN, Baker ME, et al (2014) Comparison of radiation dose and image quality from single-energy and dual-energy CT examinations in the same patients screened for hepatocellular carcinoma. Clinical Radiology 69:e538–e544.

    Article  CAS  PubMed  Google Scholar 

  64. Hanson GJ, Michalak GJ, Childs R, et al (2018) Low kV versus dual-energy virtual monoenergetic CT imaging for proven liver lesions: what are the advantages and trade-offs in conspicuity and image quality? A pilot study. Abdom Radiol 43:1404–1412.

    Article  Google Scholar 

  65. Husarik DB, Gordic S, Desbiolles L, et al (2015) Advanced virtual monoenergetic computed tomography of hyperattenuating and hypoattenuating liver lesions: ex vivo and patient experience in various body sizes. Invest Radiol 50:695–702.

    Article  PubMed  Google Scholar 

  66. Shuman WP, Green DE, Busey JM, et al (2014) Dual-energy liver CT: effect of monochromatic imaging on lesion detection, conspicuity, and contrast-to-noise ratio of hypervascular lesions on late arterial phase. American Journal of Roentgenology 203:601–606.

    Article  PubMed  Google Scholar 

  67. De Cecco CN, Caruso D, Schoepf UJ, et al (2018) A noise-optimized virtual monoenergetic reconstruction algorithm improves the diagnostic accuracy of late hepatic arterial phase dual-energy CT for the detection of hypervascular liver lesions. Eur Radiol 28:3393–3404.

    Article  PubMed  Google Scholar 

  68. Yoon JH, Chang W, Lee ES, et al (2020) Double Low-Dose Dual-Energy Liver CT in Patients at High-Risk of HCC: A Prospective, Randomized, Single-Center Study. Invest Radiol 55:340–348.

    Article  CAS  PubMed  Google Scholar 

  69. Mileto A, Nelson RC, Samei E, et al (2014) Dual-energy MDCT in hypervascular liver tumors: effect of body size on selection of the optimal monochromatic energy level. American Journal of Roentgenology 203:1257–1264.

    Article  PubMed  Google Scholar 

  70. Matsuda M, Tsuda T, Kido T, et al (2018) Dual-energy computed tomography in patients with small hepatocellular carcinoma: utility of noise-reduced monoenergetic images for the evaluation of washout and image quality in the equilibrium phase. Journal of Computer Assisted Tomography 42:937–943.

    Article  PubMed  Google Scholar 

  71. Caruso D, De Cecco CN, Schoepf UJ, et al (2017) Can dual-energy computed tomography improve visualization of hypoenhancing liver lesions in portal venous phase? Assessment of advanced image-based virtual monoenergetic images. Journal of Clinical Imaging 41:118–124.

    Article  PubMed  Google Scholar 

  72. Lenga L, Lange M, Arendt CT, et al (2020) Can Dual-energy CT-based Virtual Monoenergetic Imaging Improve the Assessment of Hypodense Liver Metastases in Patients With Hepatic Steatosis? Academic Radiology

  73. Pfeiffer D, Parakh A, Patino M, et al (2018) Iodine material density images in dual-energy CT: quantification of contrast uptake and washout in HCC. Abdom Radiol 43:3317–3323.

    Article  Google Scholar 

  74. Lee J-A, Jeong WK, Kim Y, et al (2013) Dual-energy CT to detect recurrent HCC after TACE: initial experience of color-coded iodine CT imaging. European Journal of Radiology 82:569–576.

    Article  PubMed  Google Scholar 

  75. Lee SH, Lee JM, Kim KW, et al (2011) Dual-energy computed tomography to assess tumor response to hepatic radiofrequency ablation: potential diagnostic value of virtual noncontrast images and iodine maps. Invest Radiol 46:77–84.

    Article  PubMed  Google Scholar 

  76. Altenbernd J, Heusner TA, Ringelstein A, et al (2011) Dual-energy-CT of hypervascular liver lesions in patients with HCC: investigation of image quality and sensitivity. Eur Radiol 21:738–743.

    Article  PubMed  Google Scholar 

  77. Dai X, Schlemmer H-P, Schmidt B, et al (2013) Quantitative therapy response assessment by volumetric iodine-uptake measurement: initial experience in patients with advanced hepatocellular carcinoma treated with sorafenib. European Journal of Radiology 82:327–334.

    Article  PubMed  Google Scholar 

  78. Ascenti G, Sofia C, Mazziotti S, et al (2016) Dual-energy CT with iodine quantification in distinguishing between bland and neoplastic portal vein thrombosis in patients with hepatocellular carcinoma. Clinical Radiology 71:938-e1.

    Article  Google Scholar 

  79. Qian LJ, Zhu J, Zhuang ZG, et al (2012) Differentiation of neoplastic from bland macroscopic portal vein thrombi using dual-energy spectral CT imaging: a pilot study. Eur Radiol 22:2178–2185.

    Article  PubMed  Google Scholar 

  80. Guimaraes LS, Fletcher JG, Harmsen WS, et al (2010) Appropriate patient selection at abdominal dual-energy CT using 80 kV: relationship between patient size, image noise, and image quality. Radiology 257:732–742.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís S. Guimarães.

Ethics declarations

Conflict of interest

K.Y.E., A.M., B.M. and L.S.G. have nothing to disclose. P.R. Activities related to the present article: disclosed no relevant relationships. Activities not related to the present article: received Institutional Research Grant from Canon Medical Systems. There was no commercial funding for this study. All authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbanna, K.Y., Mansoori, B., Mileto, A. et al. Dual-energy CT in diffuse liver disease: is there a role?. Abdom Radiol 45, 3413–3424 (2020). https://doi.org/10.1007/s00261-020-02702-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-020-02702-4

Keywords

Navigation