Skip to main content

Advertisement

Log in

Evaluation of simultaneous-multislice diffusion-weighted imaging of liver at 3.0 T with different breathing schemes

  • Hepatobiliary
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To obtain the optimal simultaneous-multislice (SMS)—accelerated diffusion-weighted imaging (DWI) of the liver at 3.0 T MRI by systematically estimating the repeatability of apparent diffusion coefficient (ADC), signal-to-noise ratio (SNR) and image quality of different breathing schemes in comparison to standard DWI (STD) and other SMS sequences.

Methods

In this institutional review board-approved prospective study, hepatic DWIs (b = 50, 300, 600 s/mm2) were performed in 23 volunteers on 3.0 T MRI using SMS and STD with breath-hold (BH-SMS, BH-STD), free-breathing (FB-SMS, FB-STD) and respiratory-triggered (RT-SMS, RT-STD). Reduction of scan time with SMS-acceleration was calculated. ADC and SNR were measured in nine anatomic locations and image quality was assessed on all SMS and STD sequences. An optimal SMS-DWI was decided by systematically comparing the ADC repeatability, SNR and image quality among above DWIs.

Results

SMS-DWI reduced scan time significantly by comparison with corresponding STD-DWI (27 vs. 42 s for BH, 54 vs. 78 s for FB and 42 vs. 97 s for RT). In all DWIs, BH-SMS had the greatest intraobserver agreement (intraclass correlation coefficient (ICC): 0.920–0.944) and good interobserver agreement (ICC: 0.831–0.886) for ADC measurements, and had the best ADC repeatability (mean ADC absolute differences: 0.046–0.058 × 10−3mm2/s, limits of agreement (LOA): 0.010–0.013 × 10−3mm2/s) in nine locations. BH-SMS had the highest SNR in three representative sections except for RT-STD. There were no significant differences in image quality between BH-SMS and other DWI sequences (median BH-SMS: 4.75, other DWI: 4.5–5.0; P > 0.0.5).

Conclusion

BH-SMS provides considerable scan time reduction with good image quality, sufficient SNR and highest ADC repeatability on 3.0 T MRI, which is thus recommended as the optimal hepatic DWI sequence for those subjects with adequate breath-holding capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SMS:

Simultaneous-multislice

DWI:

Diffusion-weighted imaging

STD:

Standard DWI

ADC:

Apparent diffusion coefficient

SNR:

Signal-to-noise ratio

BH:

Breath-hold

FB:

Free-breathing

RT:

Respiratory-triggered

ICC:

Intraclass correlation coefficient

LOA:

Limits of agreement

References

  1. Shenoy-Bhangle A, Baliyan V, Kordbacheh H, Guimaraes AR, Kambadakone A. Diffusion weighted magnetic resonance imaging of liver: Principles, clinical applications and recent updates. World J Hepatol. 2017;9:1081-91. https://doi.org/10.4254/wjh.v9.i26.1081.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Galea N, Cantisani V, Taouli B. Liver lesion detection and characterization: role of diffusion-weighted imaging. J MAGN RESON IMAGING. 2013;37:1260-76. https://doi.org/10.1002/jmri.23947

    Article  PubMed  Google Scholar 

  3. Gong NJ, Wong CS, Chu YC, Gu J. Treatment response monitoring in patients with gastrointestinal stromal tumor using diffusion-weighted imaging: preliminary results in comparison with positron emission tomography/computed tomography. NMR BIOMED. 2013;26:185-92. https://doi.org/10.1002/nbm.2834

    Article  PubMed  Google Scholar 

  4. Bickel H, Pinker-Domenig K, Bogner W, Spick C, Bago-Horvath Z, Weber M, et al. Quantitative apparent diffusion coefficient as a noninvasive imaging biomarker for the differentiation of invasive breast cancer and ductal carcinoma in situ. INVEST RADIOL. 2015;50:95-100. https://doi.org/10.1097/RLI.0000000000000104

    Article  CAS  PubMed  Google Scholar 

  5. Zhuo J, Gullapalli RP. AAPM/RSNA physics tutorial for residents: MR artifacts, safety, and quality control. RADIOGRAPHICS. 2006;26:275-97. https://doi.org/10.1148/rg.261055134.

    Article  PubMed  Google Scholar 

  6. Taron J, Martirosian P, Erb M, Kuestner T, Schwenzer NF, Schmidt H, et al. Simultaneous multislice diffusion-weighted MRI of the liver: Analysis of different breathing schemes in comparison to standard sequences. J MAGN RESON IMAGING. 2016;44:865-79. https://doi.org/10.1002/jmri.25204.

    Article  PubMed  Google Scholar 

  7. Barth M, Breuer F, Koopmans PJ, Norris DG, Poser BA. Simultaneous multislice (SMS) imaging techniques. MAGN RESON MED. 2016;75:63-81. https://doi.org/10.1002/mrm.25897.

    Article  PubMed  Google Scholar 

  8. Taron J, Schraml C, Pfannenberg C, Reimold M, Schwenzer N, Nikolaou K, et al. Simultaneous multislice diffusion-weighted imaging in whole-body positron emission tomography/magnetic resonance imaging for multiparametric examination in oncological patients. EUR RADIOL. 2018;28:3372-83. https://doi.org/10.1007/s00330-017-5216-y.

    Article  PubMed  Google Scholar 

  9. Hsu YC, Chu YH, Tsai SY, Kuo WJ, Chang CY, Lin FH. Simultaneous multi-slice inverse imaging of the human brain. Sci Rep. 2017;7:17019. https://doi.org/10.1038/s41598-017-16976-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weiss J, Martirosian P, Taron J, Othman AE, Kuestner T, Erb M, et al. Feasibility of accelerated simultaneous multislice diffusion-weighted MRI of the prostate. J MAGN RESON IMAGING. 2017;46:1507-15. https://doi.org/10.1002/jmri.25665.

    Article  PubMed  Google Scholar 

  11. Kwee TC, Takahara T, Koh DM, Nievelstein RA, Luijten PR. Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free-breathing diffusion-weighted MR imaging of the liver. J MAGN RESON IMAGING. 2008;28:1141-48. https://doi.org/10.1002/jmri.21569.

    Article  PubMed  Google Scholar 

  12. Lee Y, Lee SS, Kim N, Kim E, Kim YJ, Yun SC, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of the liver: effect of triggering methods on regional variability and measurement repeatability of quantitative parameters. RADIOLOGY. 2015;274:405-15. https://doi.org/10.1148/radiol.14140759.

    Article  PubMed  Google Scholar 

  13. Chen X, Qin L, Pan D, Huang Y, Yan L, Wang G, et al. Liver diffusion-weighted MR imaging: reproducibility comparison of ADC measurements obtained with multiple breath-hold, free-breathing, respiratory-triggered, and navigator-triggered techniques. RADIOLOGY. 2014;271:113-25. https://doi.org/10.1148/radiol.13131572.

    Article  PubMed  Google Scholar 

  14. Kandpal H, Sharma R, Madhusudhan KS, Kapoor KS. Respiratory-triggered versus breath-hold diffusion-weighted MRI of liver lesions: comparison of image quality and apparent diffusion coefficient values. AJR Am J Roentgenol. 2009;192:915-22. https://doi.org/10.2214/AJR.08.1260.

    Article  PubMed  Google Scholar 

  15. Rosenkrantz AB, Oei M, Babb JS, Niver BE, Taouli B. Diffusion-weighted imaging of the abdomen at 3.0 Tesla: image quality and apparent diffusion coefficient reproducibility compared with 1.5 Tesla. J MAGN RESON IMAGING. 2011;33:128-35. https://doi.org/10.1002/jmri.22395.

    Article  PubMed  Google Scholar 

  16. Larsen NE, Haack S, Larsen LP, Pedersen EM. Quantitative liver ADC measurements using diffusion-weighted MRI at 3 Tesla: evaluation of reproducibility and perfusion dependence using different techniques for respiratory compensation. MAGMA. 2013;26:431-42. https://doi.org/10.1007/s10334-013-0375-6.

    Article  PubMed  Google Scholar 

  17. Nasu K, Kuroki Y, Sekiguchi R, Kazama T, Nakajima H. Measurement of the apparent diffusion coefficient in the liver: is it a reliable index for hepatic disease diagnosis? Radiat Med. 2006;24:438-44. https://doi.org/10.1007/s11604-006-0053-y.

    Article  CAS  PubMed  Google Scholar 

  18. Koc Z, Erbay G. Optimal b value in diffusion-weighted imaging for differentiation of abdominal lesions. J Magn Reson Imaging. 2014;40:559-66. https://doi.org/10.1002/jmri.24403.

    Article  PubMed  Google Scholar 

  19. Boss A, Barth B, Filli L, Kenkel D, Wurnig MC, Piccirelli M, et al. Simultaneous multi-slice echo planar diffusion weighted imaging of the liver and the pancreas: Optimization of signal-to-noise ratio and acquisition time and application to intravoxel incoherent motion analysis. EUR J RADIOL. 2016;85:1948-55. https://doi.org/10.1016/j.ejrad.2016.09.002.

    Article  PubMed  Google Scholar 

  20. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. PSYCHOL BULL. 1979;86:420-28.

    Article  CAS  Google Scholar 

  21. Busing KA, Kilian AK, Schaible T, Debus A, Weiss C, Neff KW. Reliability and validity of MR image lung volume measurement in fetuses with congenital diaphragmatic hernia and in vitro lung models. RADIOLOGY. 2008;246:553-61. https://doi.org/10.1148/radiol.2462062166.

    Article  PubMed  Google Scholar 

  22. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. LANCET. 1986;1:307-10.

    Article  CAS  Google Scholar 

  23. Bland JM, Altman DG. Multiple significance tests: the Bonferroni method. BMJ. 1995;310:170.

    Article  CAS  Google Scholar 

  24. Dunn OJ. Multiple Comparisons Using Rank Sums. Technometrics. 1964;6:241-52. https://doi.org/10.1080/00401706.1964.10490181.

    Article  Google Scholar 

  25. Kim SY, Lee SS, Byun JH, Park SH, Kim JK, Park B, et al. Malignant hepatic tumors: short-term reproducibility of apparent diffusion coefficients with breath-hold and respiratory-triggered diffusion-weighted MR imaging. RADIOLOGY. 2010;255:815-23. https://doi.org/10.1148/radiol.10091706.

    Article  PubMed  Google Scholar 

  26. Kartalis N, Loizou L, Edsborg N, Segersvard R, Albiin N. Optimising diffusion-weighted MR imaging for demonstrating pancreatic cancer: a comparison of respiratory-triggered, free-breathing and breath-hold techniques. EUR RADIOL. 2012;22:2186-92. https://doi.org/10.1007/s00330-012-2469-3.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Number: 81371541, Beijing, China), Natural Science Foundation of HuNan Province (Grant Number: 2018JJ2656, Changsha, China), and China Postdoctoral Science Foundation(Grant Number: 2019M652807, Beijing, China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Hu.

Ethics declarations

Conflict of interest

There was no conflict of interest in this paper for all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, Y., Xie, S., Li, W. et al. Evaluation of simultaneous-multislice diffusion-weighted imaging of liver at 3.0 T with different breathing schemes. Abdom Radiol 45, 3716–3729 (2020). https://doi.org/10.1007/s00261-020-02538-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-020-02538-y

Keywords

Navigation